Принцип работы мультиплексора простыми словами. Мультиплексоры: виды, сферы применения и особенности

По своей архитектуре цифровой мультиплексор представляет собой устройство, оснащенное несколькими цифровыми позиционными переключателями. Целью их работы является коммутация входных сигналов для обеспечения пропуска их в единую выходную линию.

Цифровой мультиплексор, как правило, имеет три группы входных каналов. Адресные, двоичный код которых служит для определения связи между информационным входом и конечным выходом, информационные и , их еще называют стробирующими.

В современных интегральных цифровой мультиплексор максимально оснащен шестнадцатью информационными входами.
Если при проектировании выясняется, что требуется большее количество информационных входов, то проблема решается за счет создания структуры так называемого мультиплексорного дерева, которое оснащается несколькими интегральными микросхемами.

Цифровой мультиплексор предназначается для синтеза фактически любого необходимого логического устройства, что позволяет сократить общее количество используемых логических элементов.

Для определения потребности выполняются следующие действия: на основании выходной функции, согласно значений переменных, строится карта Карно. Далее определяется порядок работы мультиплексора в схеме. Затем строится маскирующая матрица в обязательном порядке, соответствующая порядку примененного мультиплексора.

После этого получившаяся матрица накладывается на карту Карно. Затем проводится минимизация функции для каждой из областей имеющейся матрицы. В конце, уже на основании полученных результатов минимизации, строится . Таковы правила синтеза на основе использования мультиплексора.

Возможности мультиплексора

Применение мультиплексоров многогранно. Например, гибкие мультиплексоры позволяют формировать непрерывные первичные цифровые потоки со скоростью 2048 кбит/с на основе аналоговых сигналов. Также коммутировать данные цифровых интерфейсов методом кроссовой коммутации электронных каналов со скоростями до 64 кбит/с.

Кроме этого, осуществляют передачу цифрового потока по сети IP/Ethernet также обеспечивают конвертацию линейной сигнализации и физических стыков.

Гибкие мультиплексоры, кроме этого, обеспечивают возможность осуществления широковещательных соединений, то есть подачу сигналов с одного из цифровых либо аналоговых источников сразу на несколько других. По этой причине их часто применяют для передачи радиовещательных программ одновременно в несколько различных точек.

На сегодняшний день приобретение дополнительной техники или специальных устройств является достаточно дорогим удовольствием. Для того, чтобы сохранить свои финансовые затраты, довольно часто используют такие устройства, как мультиплексор и демультиплексор, которые являются своеобразными селекторами данных.

В случае с мультиплексором есть возможность через один выход пропустить информацию с нескольких входов. А демультиплексор действует с точностью наоборот – распределяет полученные данные с одного входа на разные выходы.

Мультиплексор представляет собой такое оборудование, которое содержит в себе несколько входов сигнала, один или несколько входов управления и лишь один общий выход. Данное устройство дает возможность передавать определенный канал из одного из имеющихся входов на специальный и единственный выход.

При всем этом выбирается вход с помощью подачи определенной комбинации сигналов управления. Чаще всего мультиплексор необходим там, где нужно обустраивать для передачи сигналов большое количество каналов (сигналов), а денег и технического оснащения для этого нет.

Работоспособность данного типа устройства основана на том, что сигнал связи, даже в случае, если он один, очень часто не применяется на всю мощность. По этой причине имеется лишнее место для запуска других потоков информации по одной линии.

Разумеется, что если все эти потоки пускаются в изначальном виде и в одно и то же время, то на выходе получится обычная мешанина информационных данных, которую будет практически нереально расшифровать. Из-за этого мультиплексор производится при помощи разделения потоков информации разнообразными методами.

Разделение по частотным полосам – это когда все потоки данных идет в одно и то же время, но с разной частотой. При этом не происходит смешивание потоков. Кроме этого, есть возможность пустить потоки в различных временных линиях. Также особо популярным является способ кодирования. В этом случае все потоки обозначаются специальными знаками, кодируются и одновременно отправляются.

Мультиплексоры классифицируют по нескольким критериям: по месту использования или по своим целевым задачам и так далее.


Линия связи мультиплексора и демультиплексора

Основным различием мультиплексоров считается то, каким образом происходит уплотнение сигналов в один сплошной поток.

Мультиплексирование бывает таких видов:

  • временного характера;
  • пространственного типа;
  • кодовым;

Как правило, если каналы являются проводными, то в применении актуальны первые два метода, а для беспроводных каналов применяются все четыре варианта. Обычно, если речь идет о мультиплексоре, то подразумевается проводное устройство.

По этой причине стоит более подробно ознакомиться с частотным и временным методами:

Методы мультиплексирования


Чтобы исполнить частотное мультиплексирование необходимо для всех потоков определить определенный частотный период. Перед самим процессом нужно переместить спектра всех каналов, что входят в период иной частоты, что не будет никак пересекаться с иными сигналами. Кроме того, для обеспечения надежности, меж частотами делают определенные интервалы для дополнительной защиты. Данный метод применяют и в электрических, и в оптических связных линиях.

Временной вариант


Временное мультиплексирование и демультиплексирование

Чтобы передать каждый сигнал в сплошном потоке, что входит, имеется определенное количество времени. В этом случае, перед устройством стоит особая задача – гарантировать доступ циклов к общей среде перенаправления для потоков, которые входят на маленький временной промежуток.

При этом необходимо сделать так, чтобы не возникло нежелательное накладывание каналов друг на друга, которое смешивает информацию. Для этого используют специальные интервалы для защиты, которые ставят меж этими самыми каналами.

Этот способ используют, как правило, для цифровых связных каналов.

Классификация мультиплексоров

Мультиплексоры существуют таких видов:

  1. Терминальные. Их размещают на концах связных линий.
  2. Ввода и вывода. Такие устройства встраивают в разрыв связных линий, чтобы из сплошного потока выводить определенные сигналы. При их помощи можно обойтись без дорогостоящих мультиплексоров терминального типа.

Также мультиплексоры классифицируются таким способом:

Аналоговые мультиплексоры


Ключи аналогового типа являются специальными аналого-дискретными элементами. Аналоговый ключ может быть представлен в качестве отдельно взятого устройства. Набор такого рода ключей, которые работают на единственный выход с цепями выборки определенного ключа, являются специальным аналоговым мультиплексором. Аналоговое оборудование в каждый период времени выбирает определенный входной канал и направляет его на специальное устройство

Цифровые мультиплексоры


Цифровые оборудования делятся на мультиплексоры второго, первого и иных высоких уровней. Цифровые мультиплексоры дают возможность принимать сигналы цифрового типа из устройств низкого уровня. При этом можно их записать, образовать цифровое течение высокого уровня. Таким образом, входящие потоки синхронизируются. Также можно отметить, что они обладают одинаковыми скоростями.

Области применения

Видеомультиплексоры применяют в телевизионной технике и различных дисплеях, в системах охранного видеонаблюдения. На мультиплексировании базируется GSM-связь и разнообразные входные модемы провайдеров в интернете. Также данные устройства применяют в GPS-приемниках, в волоконно-оптических связных линиях широкополосного типа.

Мультиплексоры используют в различных делителях частоты, специальных триггерных элементах, особых сдвигающихся устройствах и так далее. Их могут применять для того, чтобы преобразовать определенный параллельный двоичный код в последовательный.


Схема применения оптического мультиплексора

Структура мультиплексора

Мультиплексор состоит из специального дешифратора адреса входной линии каналов, разнообразных схем, в том числе и схемы объединения.

Структуру мультиплексора можно рассмотреть на примере его общей схемы. Входные данные логического типа поступают на выходы коммутатора, и далее через него направляются на выход. На вход управления подается слова адресных каналов. Само устройство тоже может обладать специальным входом управления, который дает возможность проходить или не проходить входному каналу на выход.

Существуют типы мультиплексоров, которые обладают выходом с тремя состояниями. Все нюансы работы мультиплексора зависят от его модели.

Демультиплексор

Демультиплексор представляет собой логическое устройство, которое предназначено для того, чтобы свободно переключать сигнал с одного входа информации на один из имеющихся информационных выходов. На деле демультиплексор является противоположностью мультиплексору.

Во время передачи данных по общему сигналу с разделением по временному ходу необходимо как использование мультиплексоров, так и применение демультиплексоров, то есть прибор обратного функционального назначения. Это устройство распределяет информационные данные из одного сигнала между несколькими приемниками данных.

Особым отличием данного типа устройства от мультиплексоров считается то, что есть возможность обледенить определенное количество входов в один, не применяя при этом дополнительных схем. Но для того, чтобы увеличить нагрузку микросхемы, на выходе устройства для увеличения входного канала рекомендуется установить специальный инвертор.

В схеме самого простого такого устройства для определенного выхода применяется двоичный дешифратор. Стоит отметить, что при подробном изучении дешифратора, можно сделать демультиплексор гораздо проще. Для этого необходимо ко всем логическим элементам, которые входят в структуру дешифратора прибавить еще вход. Данную структуру достаточно часто называют дешифратором, который имеет вход разрешения работы.

На что следует обратить внимание при выборе мультиплексора?

  1. Какие камеры используются – черно-белые, цветные?
  2. Общее количество камер, которое возможно подключить к устройству.
  3. Тип мультиплексора.
  4. Разрешение устройства.
  5. Наличие детектора, определяющего движение.
  6. Можно ли подключить второй экран монитора?

При выборе мультиплексора или демультиплексора необходимо учитывать все нюансы и технические характеристики устройства.

Мультиплексоры и демультиплексоры

Мультиплексоры и демультиплексоры относятся к классу комбинационных устройств, которые предназначены для коммутации потоков данных в линиях связи по заданным адресам. Большая часть данных в цифровых системах передается непосредственно по проводам и проводникам печатных плат. Часто возникает необходимость в передаче информационных двоичных сигналов (или аналоговых в аналого-цифровых системах) от источника сигналов к потребителям. В некоторых случаях нужно передавать данные на большие расстояния по телефонным линиям, коаксиальным и оптическим кабелям. Если бы все данные передавались одновременно по параллельным линиям связи, общая длина таких кабелей была бы слишком велика и они были бы слишком дороги. Вместо этого данные передаются по одному проводу в последовательной форме и группируются в параллельные данные на приемном конце этой единственной линии связи. Устройства, используемые для подключения одного из источников данных с заданным номером (адресом) к линии связи, называются мультиплексорами. Устройства, используемые для подключения линии связи к одному из приемников информации с указанным адресом, называются демультиплексорами. Параллельные данные одного из цифровых устройств с помощью мультиплексора могут быть преобразованы в последовательные информационные сигналы, которые передаются по одному проводу. На выходах демультиплексора эти последовательные входные сигналы могут быть снова сгруппированы в параллельные данные.

1. Мультиплексоры

Теоретические сведения

В цифровых устройствах часто возникает необходимость пере­дать цифровую информацию от m различных устройств к n приёмникам через канал общего пользования. Для этого на входе канала, устанавливают устройство М (рис.1.1), называемое мультиплексором, которое согласно коду адреса Аm подключает к каналу один из m («1 из m») источников информации, а на выходе канала устройство DM (демультиплексор) обеспечивает передачу информации к приемнику, имеющему цифровой адрес Аn.

То есть мультиплексор – это комбинационное устройство, предназначенное для подключения одного из n входных сигналов к общему выходу в соответствии с кодом адреса. Применительно к компьютерной схемотехнике: мультиплексор – это функциональный узел цифровой системы, предназначенный для коммутации (переключения) информации от одного из m адресуемых входов на общий выход. Номер конкретной входной линии, подключаемой к выходу, в каждый такт машинного времени определяется адресным кодом А 0 ,…А k -1 . Связь между числом информационных m и адресных k входов определяется соотношением m2 k . Таким образом, мультиплексор реализует управляемую передачу данных от нескольких входных линий в одну выходную.

Принцип работы мультиплексора (и демультиплексора) наглядно демонстрирует рис. 1.1.

Функция мультиплексоров в поле типа ЛЭ записывается буквами MUX (multiplexor). Условное графическое обозначение (УГО) мультиплексора показано на рис.1.2.

Мультиплексоры применяются для коммутации отдельных линий или групп линий (шин), преобразования параллельного кода в последовательный, реализации логических функций нескольких переменных, построения схем сравнения, генераторов кодов. Применительно к мультиплексорам пользуются так же термином «селекторы» данных.

Мультиплексоры включают в себя дешифратор адреса. Сигналы дешифратора управляют логи­ческими вентилями, разрешая передачу информации только через один из них. Логика функционирования мультиплексора для m=4 описывается табл.1.1, где x 0 ,...,x 3 – выходы независимых источников информации, а переменные А 0 , А 1 являются адресными, т.е. представляют в двоичном коде номер информационного входа, подключаемого в данный момент к выходу Y. Тогда функционирование мультиплексора описывается таблицей истинности табл. 1.1:

х 3 х 2 х 1 х 0

В терминах булевой алгебры функция мультиплексора имеет вид:

Простейший мультиплексор, реализующий заданное табл.1.1 преоб­разование, может быть построен на логических элементах И, ИЛИ в сочетании с дешифратором адреса. В такой структуре сигнал на выходе мультиплексора Y устанавливается с задержкой адресных сигналов в логических ступенях дешифратора (рис.1.3,а).

Быстродействие мультиплексора можно увеличить, ес­ли совместить дешифратор адреса и информационные вентили (рис.1.3,б).

Стробирующий вход С (на рис.1.3,б) используется для исключения несанкционированного подключения к выходу случайных входов на время смены адресов. Короткий запирающий импульс (строб-импульс) обеспечивает отключение выхода от входов на время переадресации.

Рассмотрим некоторые схемотехнические применения мультиплексо­ров. Вполне очевидным является использование мультиплексора в ка­честве преобразователя параллельного m-разрядного двоичного ко­да в последовательный. Для этого достаточно на входы мультиплексо­ра подать параллельный код и затем последовательно изменять код адреса в требуемой последовательности. При этом во избежание появления ложного сигнала на выходе мультиплексора строб-импульс на время переключения адреса должен отключать выход от входов.


Мультиплексоры могут быть использованы для построения логи­ческих функций нескольких переменных в виде дизъюнктивной нормальной формы. Пусть логическая функция определена пятью независимыми пере­менными. Если их подать на адресные входы, соответствующего мульти­плексора на 2 5 = 32 информационных входа (мультиплексорное дерево), то для получения на выходе Q любой функции пяти переменных достаточно подать логические единицы на информационные входы, адрес которых совпадает с минтермами синтезируемой функции. На остальные входы необходимо подать логические нули, исключив тем самым соответствующие комбинации из выходной функции. Такой метод приемлем, если функция m переменных содержит близкое к 2 m количество минтермов, в противном случае схема получается избыточной.

Мультиплексор может быть использован более эффективно, если аргументы функций подавать не только на адресные, но и на информационные входы. Для этого аргументы синтезируемой функции f(х 1 …,х m) разделяются на информационные вхо­ды D i и адресные входы (А j) так, чтобы последними управляли пере­менные, наиболее часто входящие в минтермы функции.

В интегральном исполнении мультиплексоры выпускают на четыре, восемь или шестнадцать входов. Каскадирование мультиплексоров позволяет реализовать коммутацию произвольного числа входных линий на базе серийных микросхем мультиплексора меньшей разрядности. Пример построения схемы мультиплексоров на 16 входов на основе типовых 4-входовых мультиплексоров показан на рисунке 1. Такая схема называется мультиплексорным деревом.

Алгоритм синтеза устройства, реализующего логическую функцию на основе мультиплексора, включает в себя сле­дующие операции:

    представить функцию в виде СДНФ;

    для данной СДНФ заполнить карту Карно (Вейча);

    на карте Карно (Вейча) выделить области по количеству информационных входов мультиплексора. Количество строк m и столбцов n в таких областях должно удовлетворять условию: m,n=2 k , где k=0,1,2,…Переменные, сохраняющие свое значение в пределах выделенных областей, являются адресными, а остальные – информационными;

    подать адресные переменные любым способом на адресные входы выбранного (или заданного) мультиплексора, определив таким образом однозначное соответствие адресных областей определенному информационному входу;

    для каждой области найти МДНФ/МКНФ относительно информационных переменных, для управления информационными входами;

    с помощью тождественных преобразований МДНФ/МКНФ привести к виду, удобному для совместной реализации;

    реализовать схемы по каждому информационному входу мультиплексора в выбранном элементном базисе.

Приведем пример построения мультиплексора, реализующего некоторую функцию:

Для данной функции построим карту Карно:

2. Пусть задан мультиплексор с 4 информационными входами (2 входа – адресные). На карте Карно выделим адресные области. Для выбранного варианта разбиения на адресные области адресными стали переменные X 1 , X 3 . Их можно двумя способами подать на адресные входы: A 1 =X 1, A 0 =X 3 либо A 1 =X 3 , A 0 =X 1 (способ подачи не имеет значения). Тогда адресным областям соответствуют информационные входы D 0 , D 1 , D 2, D 3 (показаны на карте Карно). Адресные области определяют функции управления соответствующим информационным входом мультиплексора.

    Минимизируем функции управления:

D 1 =X 0 , D 2 =X 0 ,

Реализуем полученные функции (рис. 1.5):

Исследование мультиплексора

Цель работы – исследование логики функционирования, статических и динамических параметров комбинационных устройств на примере четырехвходового мультиплексора, построенного на элементах Шеффера.

Принципиальная схема четырехвходового мультиплексора приведена на рис. 1.6.

Рабочее задание

    Собрать исследуемую схему мультиплексора (рис. 1.7). На схеме генераторы прямоугольных импульсов G1, G2, G3, G4 имитируют источники входных данных, а 2-разрядный двоичный счетчик на триггерах Тг1, Тг2 обеспечивает периодическую смену адресов мультиплексора.

Методические указания

    В схеме (рис. 1.7) использовать модели идеальных компонентов или серии ЛЭ, заданные преподавателем.

    Подать сигналы от генераторов с частотами f 0, f 1 , f 2 , f 3 , f 4 – по заданию преподавателя, источник напряжения V1 = U ип.

    При нормальном функционировании мультиплексора на его выходе должны сформироваться серии импульсов с частотами f 1 , f 2 , f 3 , f 4 (вход осциллоскопа В). Для исследования переходных процессов в мультиплексоре отключите генератор G0 от входа триггера Тг1 и подключите его ко входам R триггеров.. Определите частоту статические и динамические параметры сигнала на выходе мультиплексора.

    Подключите генератор G0 ко входу триггера Тг1, а входы Logic Analyzer - в точки схемы, как показано на рис. 1.7.

Контрольные вопросы

    Что такое мультиплексор и для чего мультиплексоры используются?

    Приведите уравнение, описывающее работу четырехвходового мультиплексора.

    Объясните назначение информационных входов.

    Для чего в мультиплексорах используется стробирующий вход?

    От чего зависит быстродействие мультиплексора?

    Для чего применяют каскадирование мультиплексоров?

2. Демультиплексоры

Теоретические сведения

Демультиплексором называется функциональный узел компьютера, предназначенный для коммутации (переключения) сигнала единственного информационного входа D на один из n информационных выходов. Номер выхода, на который в каждый такт машинного времени подается значение входного сигнала, определяется адресным кодом A 0 ,A 1 …,A m-1 . Адресные входы m и информационные выходы n связаны соотношением n2 m. В качестве демультиплексора может быть использован дешифратор DC. При этом информационный сигнал подается на вход разрешения Е (от англ. enable – разрешение). Стробируемый демультиплексор с информационным входом D, адресными входами А 1 , А 0 и стробирующим входом С показан на рисунке 2.1. Демультиплексор выполняет функцию, обратную функции мультиплексора. Применительно к мультиплексорам и демультиплексорам пользуются так же термином «селекторы» данных.

Демультиплексоры используют для коммутации отдельных линий и многоразрядных шин, преобразования последовательного кода в параллельный. Как и мультиплексор, демультиплексор включают в себя дешифратор адреса. Сигналы дешифратора управляют логи­ческими вентилями, разрешая передачу информации только через один из них (рис.1.1)

Логика функционирования демультиллексора для случая n=4 иллюстрируется табл. 2.1, где y0,…,у3 – входы приемников информации.

Адрес А 1 А 0

Выход Y 0 Y 1 Y 2 Y 3

Рабочее задание

    Собрать исследуемую схему мультиплексора (рис. 2.4). На схеме генератор прямоугольных импульсов G1 имитирует источник входных данных, а 2-разрядный двоичный счетчик на триггерах Тг1, Тг2 обеспечивает периодическую смену адресов мультиплексора. (рис. 2.4).

Методические указания

Контрольные вопросы

    Что такое демультиплексор и для чего демультиплексоры используются?

    Приведите уравнения, описывающие работу демультиплексора на четыре выхода.

    Объясните назначение адресных входов.

    Для чего в демультиплексорах используется стробирующий вход?

    От чего зависит быстродействие демультиплексора?

    Для чего применяют каскадирование демультиплексоров?

Литература

    Элементы цифровой схемотехники: Учеб. пособие/ В.П.Сигорский, В.И. Зубчук, А.Н. Шкуро. –Киев: УМК ВО, 1990.

    Бабіч Н.П., Жуков І.А. Комп’ютерна схемотехніка. Київ 200

    Зубчук В.И., Сигорский В.П., Шкуро А.Н. Справочник по цифровой схемотехнике. – К.: “Техніка”, 1990.

  1. Волоконно-оптические сети и системы связи

    Конспект >> Коммуникации и связь

    Разветвители и ответвители, оптические мультиплексоры /демультиплексоры , оптические фиксированные аттенюаторы, оптические... оптические компенсаторы хроматической дисперсии, оптические мультиплексоры /демультиплексоры и фильтры. Перечисленные устройства, ...

  2. Постановка лабораторной работы по курсу волоконно-оптические системы связи

    Реферат >> Промышленность, производство

    Оптические разветвители…………………………………………………………..25 3.1 Мультиплексоры и демультиплексоры …………………………………..25 3.2 Делители оптической мощности... оптическими несущими и называются мультиплексорами демультиплексорами соответственно). Вторые используются для...

  3. Компютерна схемотехніка (2)

    Курсовая работа >> Информатика

    МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ ЧЕРНІВЕЦЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ЮРІЯ ФЕДЬКОВИЧА Факультет комп’ютерних наук Кафедра комп’ютерних систем та мереж Курсова робота Комп’ютерна схемотехніка 2007 Лінійні дешифратори. Функції алгебри логіки, ...

В компьютерных схемах используется множество деталей, которые по отдельности кажутся бесполезными (и в большинстве случае они таковими и являются). Но стоит их, придерживаясь законов физики, собрать в логическую систему, как они могут оказаться просто незаменимыми. Хорошим примером являются мультиплексоры и демультиплексоры. Они играют важную роль при создании систем связи. Мультиплексор - это несложно. И вы сами в этом убедитесь прочитав статью.

Мультиплексор - это что?

Под мультиплексором понимают устройство, которое выбирает один из нескольких входов, а потом подключает к своему выходу. Всё зависит от состояния двоичного кода. Мультиплексор используется как переключатель сигналов, который имеет несколько входов и только один выход. Механизм его работы можно описать такой таблицей:

Подобные таблицы можно увидеть при изучении программирования, а конкретнее - при решении задач логического выбора. Сначала про аналоговый мультиплексор. Они соединяют входы и выходы напрямую. Существует оптический мультиплексор, который является более сложными. Они просто копируют получаемые значения.

Что такое демультиплексор?

Под демультиплексором понимают устройство с одним входом и множеством выходов. Что к чему будет подключаться - определяет двоичный код. Для этого он считывается, и выход, который имеет необходимое значение, подключается к входу. Как видите, данные устройства не обязательно должны действовать в паре для полноценной работы, а своё название получили из-за выполняемого функционала.

Схема мультиплексора

Давайте рассмотрим схему мультиплексора. Самая большая часть - это элемент И-ИЛИ. Он может иметь разное количество входов, начиная от двух и теоретически до бесконечности. Но, как правило, больше чем на 8 входов их не делают. Каждый отдельный вход называется инвертором. Те, что расположены слева, называют информационными. Посередине находятся адресные входы. Справа обычно подключается элемент, который определяет, будет ли работать сам мультиплексор. Это может быть дополнено входом с инверсией. Для письменного обозначения количества входов и для показа, что это мультиплексор, используют записи такого типа: «1*2». Под единицей понимают количество выводов, что идут в утройство. Двойка используется для обозначения выхода и обычно равна 1. В зависимости от количества адресных входов определяется, какой будет разряд у мультиплексора, и в данном случае используется формула: 2 n . Вместо n как раз и подставляют необходимое значение. В данном случае 2 2 = 4. Если для двоичного или троичного мультиплексора разница количества входов и выходов составляет соответственно два и три, то говорят, что они полные. При меньшем значении они неполные. Вот такое устройство имеет мультиплексор. Схема дополнительно представлена в виде изображения, чтобы вы имели самое полное представление о его строении.

Схема демультиплексора

Для коммутации каналов в демультиплексорах используются только логические элементы «И». Учитывайте, что КМОП-микросхемы часто строятся с применением ключей на полевых транзисторах. Поэтому к ним не применяется понятие демультиплексора. Можно ли сделать так, чтобы одно устройство могла изменить свои свойства на диаметрально противоположные? Да, если поменять местами информационные выходы и входы, вследствие чего к названию "мультиплексор" можно добавлять префикс «де-». По своему предназначению они похожи на дешифраторы. Несмотря на имеющуюся разницу, оба прибора в отечественных микросхемах обозначаются одними и теми же буквами - ИД. Демультиплексоры выполняют однооперандные (одновходные, унитарные) логические функции, которые имеют значительное количество возможных вариантов реакции на сигнал.

Виды мультиплексоров

В основном различают всего два вида мультиплексоров:

  1. Терминальные. Данный тип мультиплексоров располагают на концах линии связи, по которой осуществляется передача каких-то данных.
  2. Ввода/Вывода. Они применяются в качестве инструментария, который устанавливается в разрыв линии связи, чтобы вывести несколько каналов информации из общего потока. Таким способом обходят необходимость установки терминальных мультиплексоров, которые являются более дорогими механизмами.

Стоимость мультиплексоров

Стоит подметить, что мультиплексоры - удовольствие не из дешевых. Самый дешевый на сегодняшний момент стоит больше 12 тысяч рублей, верхний предел - 270 000. Но даже при таких ценах они всё равно почти всегда выгодней прокладки новой линии. Но такая выгода присутствует, только если есть квалифицированные кадры, которые смогут выполнить весь объем работ надлежащим образом и установят правильно мультиплексор. Цена может немного повыситься, если нет штатного специалиста. Но их всегда можно нанять в специализированных компаниях.

Мультиплексирование

Мультиплексирование сигналов осуществляется из-за значительной стоимости самих каналов связи, а также из-за затрат с их обслуживанием. К тому же с чисто физической точки зрения то, что имеется сейчас, не используется на полную мощность. Установка мультиплексора для работы в системе является более выгодной в денежном отношении, чем организация нового канала. К тому же на этот процесс приходится тратить меньше времени, что тоже предполагает определённые материальные выгоды.

В рамках статьи ознакомимся с принципом действия частотного мультиплексирования. При нём под каждый входящий поток в общем канале связи специально выделяют отдельный диапазон частот. А перед мультиплексором ставят задачу, чтобы он переносил спектр каждого из входящих спектров в другой интервал значений. Это делается для исключения возможности пересечения разных каналов. Чтобы они не превратились в помеху один для другого даже при выходе за отведённые рамки, используют технологию защитных интервалов. Она заключается в том, что оставляют определённую частоту между каждым каналом, которая примет на себя удар неполадок и не скажется на общем состоянии системы. Применено FDMA-мультиплексирование может быть в оптических и электрических линиях связи.

Из ограниченности ресурсов создалась возможность усовершенствования механизма. В конечном результате всё вылилось в процесс под названием «временное мультиплексирование». При данном механизме в общем высокоскоростном потоке отводится небольшой временной промежуток для передачи одного входного сигнала. Но это не единственный вариант реализации. Может быть и такое, что отведена определённая часть времени, которая циклично повторяется через заданный интервал. В общем перед мультиплексором в данных случаях стоит задача обеспечения циклического доступа к среде передачи данных, которая должна быть открыта входящим потокам на протяжении небольших промежутков.

Заключение

Мультиплексор - это то, что расширяет возможности коммуникаций. В рамках статьи были рассмотрены приборы, используемые для передачи данных, которые позволяют значительным образом экономить на данной статье расходов. Также было кратко рассмотрено их схематическое строение и понятие мультиплексирования, его особенности и применение. Таким образом, мы рассмотрели теоретическую базу. Она понадобится для перехода к практике при желании исследовать мультиплексоры и демультиплексоры.

В данной статье мы рассмотрим мультиплексор, подробно опишем принцип его работы, в каких целях используется, как изображается на схеме, а так же как подключается. Рассмотрим 2-х и 4-х канальный мультиплексор.

Описание и принцип работы

Мультиплексирование — это общий термин, используемый для описания операции отправки одного или нескольких аналоговых или цифровых сигналов по общей линии передачи в разное время или на разных скоростях, и как таковое устройство, которое мы используем для этого, называется мультиплексором . Приобрести мультиплексор вы можете на Алиэкспресс:

Мультиплексор , сокращенно «MUX» или «MPX», представляет собой комбинационную логическую схему, предназначенную для переключения одной из нескольких входных линий на одну общую выходную линию с помощью управляющего сигнала. Мультиплексоры работают как быстродействующие многопозиционные поворотные переключатели, соединяющие или контролирующие несколько входных линий, называемых «каналами», по одному за раз.

Мультиплексоры могут представлять собой либо цифровые схемы, выполненные из высокоскоростных логических элементов, используемых для переключения цифровых или двоичных данных, либо они могут быть аналоговыми типами, использующими транзисторы, полевые МОП-транзисторы или реле для переключения одного из входов напряжения или тока на один выход.

Основным типом мультиплексора является однонаправленный поворотный переключатель, как показано на рисунке.

Поворотный переключатель, также называемый пластинчатым переключателем, поскольку каждый слой переключателя известен как пластина, представляет собой механическое устройство, вход которого выбирается вращением вала. Другими словами, поворотный переключатель — это ручной переключатель, который можно использовать для выбора отдельных линий данных или сигналов, просто повернув его входы «ВКЛ» или «ВЫКЛ». Итак, как мы можем выбрать каждый ввод данных автоматически с помощью цифрового устройства.

В цифровой электронике мультиплексоры также известны как селекторы данных, поскольку они могут «выбирать» каждую входную линию и состоят из отдельных аналоговых переключателей, заключенных в единый пакет ИС, в отличие от селекторов «механического» типа, таких как обычные переключатели и реле.

Они используются в качестве одного из методов уменьшения количества логических элементов, требуемых в конструкции схемы, или когда требуется, чтобы одна линия данных или шина данных передавали два или более различных цифровых сигналов. Например, один 8-канальный мультиплексор.

Как правило, выбор каждой входной линии в мультиплексоре контролируется дополнительным набором входов, называемых линиями управления, и в соответствии с двоичным состоянием этих управляющих входов, либо «ВЫСОКИМ», либо «НИЗКИМ», соответствующий вход данных подключается напрямую к выходу. Обычно мультиплексор имеет четное количество 2 n строк ввода данных и количество «управляющих» входов, которые соответствуют количеству входов данных.

Обратите внимание, что мультиплексоры отличаются по работе от кодеров . Кодеры могут переключать n-битный шаблон ввода на несколько выходных строк, которые представляют двоичный кодированный (BCD) выходной эквивалент активного входа.

Мы можем построить простой мультиплексор 2 в 1 из базовых логических «НЕ И» элементов, как показано на рисунке.

2-х канальный мультиплексор

Вход А этого простого мультиплексора схемы 2-1, построенной из стандартных логических элементов действует, чтобы контролировать какой вход (I 0 или I 1) передается на выход Q.

Из приведенной выше таблицы истинности мы можем видеть, что, когда вход выбора данных A в логике 0, вход I 1 передает свои данные через схему мультиплексора логического элемента «НЕ И» на выход, в то время как вход I 0 блокируется. Когда выбор данных A в логике 1, происходит обратное, и теперь вход I 0 передает данные на выход Q, в то время как вход I 1 блокируется.

Таким образом, применяя либо логическую «0», либо логическую «1» в точке A, мы можем выбрать соответствующий вход, I 0 или I 1, при этом схема будет немного похожа на однополюсный переключатель двойного хода (SPDT).

Поскольку у нас есть только одна линия управления, (A), то мы можем переключать только 2 1 входа, и в этом простом примере 2-входной мультиплексор соединяет один из двух 1-битных источников с общим выходом, создавая 2-в-1 мультиплексор. Мы можем подтвердить это в следующем булевом выражении.

и для нашей схемы 2-входного мультиплексора можно упростить к:

Мы можем увеличить количество входных данных, которые будут выбраны в дальнейшем, просто следуя той же процедуре, и более крупные схемы мультиплексоров могут быть реализованы с использованием меньших 2-в-1 мультиплексоров в качестве их основных строительных блоков. Таким образом, для мультиплексора с 4 входами нам потребуется две строки выбора данных, поскольку 4 входа представляют 2 2 линии управления данными, дающие схему с четырьмя входами, I 0 , I 1 , I 2 , I 3 и двумя линиями выбора данных A и B, как показано.

Булевое логическое выражение для этого мультиплексора 4-в-1 с входами от A до D и линиями выбора данных a, b задается как:

В этом примере в любой момент времени только один из четырех аналоговых переключателей замкнут, соединяя только один из входных линий от A до D к одному выходу Q. То, какой переключатель замкнут, зависит от входного кода адресации в строках « a » и « b ».

Таким образом, для этого примера, чтобы выбрать вход B для выхода в точке Q, адрес двоичного входа должен быть « a » = логическая «1» и « b » = логический «0». Таким образом, мы можем показать выбор данных через мультиплексор как функцию битов выбора данных, как показано.

Добавление большего количества линий адреса управления (n) позволит мультиплексору управлять большим количеством входов, поскольку он может переключать 2 n входов, но каждая конфигурация линии управления будет подключать только ОДИН вход к выходу.

Тогда реализация вышеуказанного логического выражения с использованием отдельных логических элементов потребует использования семи отдельных элементов, состоящих из элементов «И» , «ИЛИ» и «НЕ», как показано.

4-канальный мультиплексор с использованием логических элементов

Символ, используемый в логических схемах для идентификации мультиплексора, выглядит следующим образом:

Символ мультиплексора на схеме

Мультиплексоры не ограничиваются простым переключением нескольких различных входных линий или каналов на один общий выход. Существуют также типы, которые могут переключать свои входы на несколько выходов и иметь конфигурации 4-к-2, 8-к-3 или даже 16-к-4 и т.д. И пример простого двухканального 4-входного мультиплексора (4- к-2) приводится ниже:

Здесь, в этом примере, 4 входных канала переключаются на 2 отдельные выходные линии, но возможны и более крупные конфигурации. Эту простую конфигурацию 4-в-2 можно использовать, например, для переключения аудиосигналов для стерео предварительных усилителей или микшеров.

Регулируемый усилитель

Наряду с отправкой параллельных данных в последовательном формате по одной линии передачи или соединению, другое возможное использование многоканальных мультиплексоров — в устройствах цифрового аудио в качестве микшеров или где, например, усиление аналогового усилителя может регулироваться цифровым образом.


Здесь усиление напряжения инвертирующего операционного усилителя зависит от соотношения между входным резистором R IN и его резистором обратной связи Rƒ, как определено в руководствах по операционному усилителю.

Один 4-канальный SPST-переключатель, сконфигурированный как мультиплексор 4-к-1 канала, соединен последовательно с резисторами, чтобы выбрать любой резистор обратной связи для изменения значения Rƒ . Комбинация этих резисторов будет определять общее усиление напряжения усилителя (Av). Затем усиление напряжения усилителя можно отрегулировать цифровым способом, просто выбрав соответствующую комбинацию резисторов.

Цифровые мультиплексоры иногда также называют «селекторами данных», поскольку они выбирают данные для отправки на выходную линию и обычно используются в коммуникационных или высокоскоростных коммутационных сетях, таких как приложения LAN (локальная вычислительная сеть) и интернет.

Некоторые интегральные микросхемы имеют один инвертирующий элемент, подключенный к выходу, чтобы обеспечить положительный логический выход (логическая «1») на одном элементе и дополнительный отрицательный логический выход (логическая «0») на другом элементе.

Можно сделать простые схемы мультиплексора из стандартных элементов «И» и «ИЛИ», как мы видели выше, но обычно мультиплексоры / селекторы данных доступны в виде стандартных пакетов ic, таких как общий мультиплексор с 8 входами в 1 TTL 74LS151 или TTL 74LS153 Dual Мультиплексор 4 входа на 1 линию. Схемы мультиплексора с гораздо большим числом входов могут быть получены путем каскадного соединения двух или более устройств меньшего размера.

Краткий обзор мультиплексора

Мультиплексоры являются коммутационными цепями, которые просто переключают или направляют сигналы через себя, и, будучи комбинационной схемой, они не имеют памяти, поскольку нет пути обратной связи по сигналам. Мультиплексор является очень полезной электронной схемой, которая используется во многих различных устройствах, таких как маршрутизация сигналов, передача данных и приложения управления шиной данных.

При использовании с демультиплексором параллельные данные могут передаваться в последовательной форме по одному каналу передачи данных, например по оптоволоконному кабелю или телефонной линии, и снова преобразовываться в параллельные данные. Преимущество состоит в том, что требуется только одна последовательная строка данных вместо нескольких параллельных линий данных. Поэтому мультиплексоры иногда называют «селекторами данных», так как они выбирают данные в линию.

Мультиплексоры также могут использоваться для коммутации аналоговых, цифровых или видеосигналов, причем ток переключения в аналоговых цепях питания ограничен величиной от 10 мА до 20 мА на канал, чтобы уменьшить тепловыделение.

В следующей статье о комбинационных логических устройствах мы рассмотрим противоположность мультиплексора, называемого демультиплексором , который занимает одну входную линию и соединяет ее с несколькими выходными линиями.