Основные компоненты звуковой подсистемы ПК. Распределенные звуковые системы

Лекция №6. Звуковоспроизводящие системы

1. Основные компоненты звуковой подсистемы ПК.

2. Принципы обработки звуковой информации.

Основные компоненты звуковой подсистемы ПК.

Звуковая система ПК в виде звуковой карты появилась в 1989 г., существенно расширив возможности ПК как технического средства информатизации.

Звуковая система ПК - комплекс программно-аппаратных средств, выполняющих следующие функции:

· запись звуковых сигналов, поступающих от внешних источников, например, микрофона или магнитофона, путем преобразования входных аналоговых звуковых сигналов в цифровые и последующего сохранения на жестком диске;

· воспроизведение записанных звуковых данных с помощью внешней акустической системы или головных телефонов (наушников);

· воспроизведение звуковых компакт-дисков;

· микширование (смешивание) при записи или воспроизведении сигналов от нескольких источников;

· одновременная запись и воспроизведение звуковых сигналов (режим Full Duplex);

· обработка звуковых сигналов: редактирование, объединение или разделение фрагментов сигнала, фильтрация, изменение его уровня;

· обработка звукового сигнала в соответствии с алгоритмами объемного (трехмерного - 3D-Sound) звучания;

· генерирование с помощью синтезатора звучания музыкальных инструментов, а также человеческой речи и других звуков;

· управление работой внешних электронных музыкальных инструментов через специальный интерфейс MIDI.

Звуковая система ПК конструктивно представляет собой звуковые карты, либо устанавливаемые в слот материнской платы, либо интегрированные на материнскую плату или карту расширения другой подсистемы ПК, а также устройства записи и воспроизведения аудиоинформации (акустическую систему). Отдельные функциональные модули звуковой системы могут выполняться в виде дочерних плат, устанавливаемых в соответствующие разъемы звуковой карты.

Классическая звуковая система, как показано на рис. 1, содержит:

Модуль записи и воспроизведения звука;

Модуль синтезатора;

Модуль интерфейсов;

Модуль микшера (обеспечивает обмен данными между звуковой системой и другими устройствами – как внешними, так и внутренними.);

Акустическую систему.

Рис. 1. Структура звуковой системы ПК.

Первые четыре модуля, как правило, устанавливаются на звуковой карте. Причем существуют звуковые карты без модуля синтезатора или модуля записи/воспроизведения цифрового звука. Каждый из модулей может быть выполнен либо в виде отдельной микросхемы, либо входить в состав многофункциональной микросхемы. Таким образом, Chipset звуковой системы может содержать как несколько, так и одну микросхему.

Конструктивные исполнения звуковой системы ПК претерпевают существенные изменения; встречаются материнские платы с установленным на них Chipset для обработки звука.

Звуковое оборудование и программы.

За воспроизведение и запись звука в компьютерах отвечают специальные звуковые адаптеры. Звуковой адаптер содержит еще один специализированный процессор, тем самым освобождая основной процессор от функций по управлению воспроизведением звука. С помощью звукового адаптера можно записывать звуковую информацию, воспроизводить речь и музыку. Также современные звуковые платы позволяют производить обработку звука, монтаж музыкальных композиций. Кроме закодированного с заданной частотой дискретизации любого звука, возможно воспроизведение музыки, создаваемой по командам компьютера. Число голосов – параметр звуковой карты, определяющей максимальное количество одновременно синтезируемых звуков. Основным направлением развития современных звуковых плат является поддержка объемного звука. В этом случае появляется возможность позиционирования источников звука в пространстве. Для воспроизведения объемного звука необходимо не менее двух акустических систем. Однако для получения лучшего эффекта от объемного звучания лучше использовать четыре колонки – две спереди и две сзади.

Подавляющее большинство современных компьютеров оборудовано звуковой картой. Хорошие звуковые платы Sound Blaster Audigy различных версий выпускает фирма Creative. Вместе с тем в настоящее время многие материнские платы поддерживают качественный шестиканальный звук.

Чрезвычайно важно для получения качественного звука иметь хорошие акустические системы. Современные звуковые платы имеют цифровой выход SPDIF, позволяющий подключиться к бытовой технике. Однако часто более удобно использовать для компьютера собственную акустику. При использовании компьютера для просмотра видеофильмов, записанных на DVD, обязательно следует использовать современную акустическую систему из пяти колонок и сабвуфера.

Для того чтобы создавать собственные музыкальные произведения может понадобиться специальная клавиатура, подключаемая к интерфейсу MIDI. Музыкальные клавиатуры, подключаемые к звуковой карте, различаются количеством октав (обычно от трех до семи), а также количеством клавиш и их размером. Наиболее известными производителями являются фирмы Korg, Roland, Yamaha. Неплохие любительские клавиатуры выпускает фирма Casio.

Для качественной записи голоса нужно использовать соответствующие микрофоны. Простые компьютерные микрофоны не обеспечивают высокое качество звука. Кроме того, микрофонный вход большинства звуковых плат также не обладают хорошим качеством. Поэтому рекомендуется использовать микрофонный усилитель, который подключается к линейному входу звуковой платы. Микрофонный усилитель обеспечит подключение двух микрофонов, что позволит записывать стереофонический звук.

В последнее время широкое распространение получили миниатюрные цифровые проигрыватели, хранящие музыку в формате МР3. Музыка с компьютера записывается в память такого устройства, после чего ее можно прослушать в любом месте через наушники.

В качестве дополнительного источника звука для компьютера может рассматриваться компьютерный радиоприемник. Он может быть реализован в качестве дополнительной платы, а может подключаться к порту USB.

Конечно, работа со звуком на компьютере немыслима без специальных программ. Простейшие программы для работы со звуком включены в состав всех версий Windows. С их помощью вы можете настроить громкость разных источников звука, установить чувствительность микрофона и линейного входа. Кроме того, вы можете записать небольшой звуковой фрагмент, выполнить с ним простые преобразования и записать результат в файл. Также в Windows включены средства проигрывания компакт-дисков и мультимедийных файлов. Вы можете записывать музыку на цифровые плееры, прослушивать музыку из Интернета.

При использовании музыкальной клавиатуры требуется работа со звуком в реальном масштабе времени. Наиболее мощной такой программой является Cakewalk Home Studio, но можно обойтись и более простыми программами.

Для обработки звуков следует использовать звуковой редактор. Лучшими звуковыми редакторами являются программы Sound Forge и WaveLab. Для многоканального монтажа применяется редактор Cool Edit. Для создания и редактирования музыки, а также для добавления вокала к музыке, применяются программы, называемые секвенсорами MIDI и аудио. Лучшими программами этого класса являются Cakewalk Sonar и Cubase VST.

Пение караоке стало в последнее время достаточно популярным. Существуют несколько программ для создания файлов караоке и для их воспроизведения. Достаточно удобна программа Karaoke GALAXY Maker, позволяющая создавать караоке. Для воспроизведения таких файлов используют программы Karaoke GALAXY Player или vanBasco’s Karaoke Player.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-06-30

Каждый, кто работает с профессиональным звуком, наверняка хоть раз сталкивался с интегрированными системами фонового звука. Ведь ни для кого не секрет, что из таких малых и средних проектов может состоять едва ли не бо льшая часть продаж и у дистрибьютора оборудования, и у дилера, и у инсталлятора. А, в отличие от больших систем, «распределёнка» не требует сложных расчетов, создания акустических моделей и другой рутинной предпродажной работы. Опытный специалист может составить типовую спецификацию «в уме», зная только габаритные размеры помещения. И, конечно, такая система будет работать, но, как говорится в известном анекдоте, есть один нюанс…

Благодаря успешной работе маркетологов и продавцов, владельцы и франчайзи кафе, ресторанов, магазинов и торговых центров по всему миру, и в нашей стране, теперь вполне понимают, что правильный звук - это важно как для настроения и лояльности клиента, так и для эффективности того же рекламного контента. И, пусть я сейчас говорю выдержками из красочных каталогов любого производителя потолочных акустических систем, результаты труда маркетологов мы видим - все серьезные мировые бренды давно вышли на российский рынок и обратили клиента в свою веру. А грамотный руководитель бизнеса в этой сфере наконец перестал пренебрегать качеством звука, как было еще не так давно.

Казалось бы, дело сделано - формируй типовое предложение и меняй в нем количество акустических систем в зависимости от конфигурации помещения. Но всё не так просто. Вернее, относительно просто, если подходить к построению систем с позиции наименьших временных затрат на единицу товара. И в этом есть логика. А самый неоспоримый аргумент - «это ж не филармония!» - уже стал практически хрестоматийным, и он идеально применим к любому объекту, кроме, собственно говоря, той самой филармонии.

Вероятно, кто-то из вас скажет: «Это праздные рассуждения ни о чем», поэтому я перейду, наконец, к главному.

Сверхзадача статьи как раз и состоит в развенчивании распространенного мнения о том, что проектирование системы фонового звука не стоит хоть сколько-нибудь серьезных временных и умственных затрат. Что касается времени, я частично соглашусь - мало кто из нас располагает им в таком количестве, чтобы позволить себе потратить часик-другой на выбор одной из двух соседних потолочных секций для громкоговорителя. А вот подключение инженерной мысли поможет нам получить лучший результат из тех же продуктов, что и у конкурентов. И результат при правильном подходе понравится как клиенту, так и вашему отделу продаж. Согласитесь, что при нынешнем ассортименте очень похожего друг на друга звукового оборудования разных производителей, предназначенного для коммерческих систем, всё же главный, если не единственный, способ привлечь и удержать клиента - предложить наиболее привлекательную цену. И поскольку редкий покупатель будет с трепетом относиться к качеству звучания и сможет его объективно оценить, в большинстве случаев выиграет тот, предложит более экономичное решение.

Но давайте попробуем абстрагироваться от всех коммерческих составляющих и сконцентрируемся на родном и близком сердцу - на инженерной части.

Инженер, твой выход!

Существует тысяча и одна рекомендация по расчету тех же потолочных акустических систем. Давайте именно с них и начнем. Что только не предлагают нам производители для упрощения нашего труда… Один вендор распространяет среди партнёров талмуды с рекомендациями по расчету, другой предлагает «юзер-френдли» акустические симуляторы, в которых любой может нарисовать нужную конфигурацию громкоговорителей, третий пишет приложения-калькуляторы, в которые достаточно ввести линейные размеры помещения, и получишь сформированный отчет со схемой расположения. Среди последних, например, JBL, предлагающий свой калькулятор чуть ли не для каждой серии продукции. Это, признаюсь, наиболее удобно, и при правильном использовании дает быстрый и приближенный к реальности результат. Но обо всём по порядку.

Считаю необходимым «разобрать по косточкам» плюсы и минусы существующих методов.

Метод, который без сомнения автономен и энергонезависим - графический, похожий по своему принципу на построение лучевого эскиза. Для него требуется знать номинальный угол раскрытия громкоговорителя и высоту потолка. Вот как выглядит результат:


Рис. 1. Графический расчет шага расположения потолочных громкоговорителей. A - расстояние от пола до ушей слушателя; B - расстояние от ушей до потолка; C - угол раскрытия громкоговорителя; D - точка пересечения лучей соседних громкоговорителей.

Все достаточно просто. Графически изображается угол раскрытия громкоговорителя, высота ушей слушателя (принято брать 1-1,2 метра человек в сидячем положении и 1,5 метра - в стоячем), и точка пересечения горизонтали и лучей угла раскрытия считается критической точкой, которую должен пересекать луч от соседнего громкоговорителя. Таким способом и определяют шаг расположения акустических систем.

А теперь копнем чуть глубже. Известно, что величина угла раскрытия, указанная в паспорте громкоговорителя является номинальной, т.е. усредненной по частотной полосе, определяемой производителем на своё усмотрение. И ни для кого не секрет, что направленные свойства любого реального излучателя серьезно разнятся в различных частотных полосах. В результате, мы выполняем расчет, порой даже не зная, в каком диапазоне получили правильное покрытие. Так что, коллеги, будьте внимательны - сделав такой расчет с использованием номинального угла раскрытия, вы вполне можете получить «ямы» в частотных полосах, например, выше 8-10 кГц.

Теперь еще один нюанс. Номинальный угол раскрытия, как правило, высчитывается из полярных диаграмм таким образом, что при отклонении в сторону от оси излучения на ½ заявленного угла раскрытия падение уровня давления составит 6 дБ. Притом, снова внимание, на равном расстоянии от излучателя.



Рис. 2. Графический расчет шага расположения потолочных громкоговорителей. A - расстояние от пола до ушей слушателя; B - расстояние от ушей до потолка; C - угол раскрытия громкоговорителя; D - точка падения уровня звукового давления на 6 дБ

Выходит, в точке пересечения горизонтали и луча падение будет уже не 6 дБ, а больше. Ну, ничего страшного, вооружаемся циркулем и решаем проблему.

Однако это тоже ещё далеко не всё. Как вы думаете, когда мы пересечем лучи от соседних громкоговорителей в правильной точке, какое давление мы там получим? Имея 2 волны с уровнем давления по -6 дБ SPL относительно оси излучения, мы можем сложить их по правилу энергетического суммирования (Л1, стр.33) как два равных давления и получить сумму, равную -3 дБ относительно оси. Однако это правило работает в случае некогерентного сложения, т.е. например, при неодинаковом расстоянии от источников, а вот в точке пересечения лучей волны когерентны (синфазны), и только в ней складываются во всём спектре, давая удвоение давления, т.е. оно будет практически таким же, как на оси излучения. На рисунке ниже представлен результат расчета в модели с двумя близко расположенными потолочными громкоговорителями.



Рис. 3. Расчет уровня звукового давления с использованием двух потолочных громкоговорителей в октавной полосе с центров на частоте 500 Гц.

В итоге получается вот какая картина: когерентное сложение волн ровно между громкоговорителями существует всегда и дает повышение до +3 дБ на довольно малой площади, а буквально в сантиметрах от этого «шва» волны суммируются некогерентно и наблюдается падение давления. И сразу поясню, что полностью избавиться от этого «шва» не удастся. Ниже приведены результаты акустического моделирования с разным шагом громкоговорителей.


Рис. 4. Диаграмма звукового давления при расположении громкоговорителей на высоте 3 метра от пола с шагом 1.5 метра. Расчет сделан в треть-октавных полосах 10 кГц (нижняя диаграмма) и 400 Гц (верхняя диаграмма).


Рис. 5. Диаграмма звукового давления при расположении громкоговорителей на высоте 3 метра от пола с шагом 3 метра. Расчет сделан в треть-октавных полосах 10 кГц (нижняя диаграмма) и 400 Гц (верхняя диаграмма).


Рис. 6. Диаграмма звукового давления при расположении громкоговорителей на высоте 3 метра от пола с шагом 4,5 метра. Расчет сделан в треть-октавных полосах 10 кГц (нижняя диаграмма) и 400 Гц (верхняя диаграмма).

Шило или мыло?

Ну что ж, результат симуляции показал, что негативный для равномерности покрытия результат даёт как слишком большой шаг громкоговорителей, так и слишком малый. И как раз слишком малое расстояние является едва ли не более серьезной проблемой, ведь распространено заблуждение, что расположив акустические системы с минимальным шагом, мы получим равномерное покрытие по всей области частот. Для высокочастотной области этот тезис справедлив, поскольку любой громкоговоритель обладает более узкой диаграммой направленности в области высоких частот. А что касается некогерентного сложения волн, благодаря интерференции в области низких частот давление в точках пересечения лучей будет гарантированно больше, чем прямо под громкоговорителем, как бы парадоксально это не звучало. Более того, интерференционная картина будет меняться в каждой точке, и чем ближе друг к другу расположены громкоговорители, тем разительнее будут эти изменения. Так стоит ли равномерное покрытие в области высоких частот таких жертв? Не думаю.

Чтобы стало немного понятнее, внесу уточнения. Как известно, направленность волны зависит от её длины - длинные волны (частотой от 160 Гц и ниже) являются всенаправленными, т.е. угол раскрытия любого громкоговорителя на частоте, например, 80 Гц будет равен 360 градусам. В случае с потолочными системами, само собой, 180 градусов. А короткие волны обладают более узкой направленностью, что обусловлено физикой процесса распространения волн. Так, в октавной полосе 16 кГц средний потолочный громкоговоритель может иметь угол раскрытия (на -6 дБ) 45-60 градусов при паспортных номинальных 120 градусах, усредненных по диапазону 1 кГц-8 кГц. Получается, чтобы избежать «звуковых ям», расчет следует проводить, беря за основу именно характеристику раскрытия громкоговорителя на высоких частотах. Верно. Только не столь узконаправленные длинные волны будут создавать несравнимо большее давление, многократно складываться и вычитаться, создавая проиллюстрированные выше суммы и разности с тем бо льшим разбросом давлений, чем ближе друг к другу расположены их источники.

На основании прочитанного Вы имеете полное право обвинить меня в том, что я не дал очевидного ответа, как же именно правильно располагать громкоговорители. Так и есть, но если бы однозначный ответ существовал, в наших услугах не было бы нужды и спроектировать звуковую систему смог бы любой. Именно в этом заключается мастерский, как сейчас его называют, «system design» - в нахождении компромиссного решения, в балансировке между взаимоисключающими требованиями и условиями.

А в остальном, прекрасная Маркиза, всё хорошо, всё хорошо!

Перфекционизм - не такая уж плохая черта, но иногда для продуктивной работы требуется достижимый ориентир. И он у нас тоже есть. В количественной оценке равномерности звукового поля неплохо помогает используемое в статистике т.н. Стандартное Отклонение (STDev). Не буду углубляться в объяснение этого понятия - велик шанс углубиться слишком сильно.



Рис. 7. Стандартное отклонение

Перед нами график распределения неких случайных величин в пределах стандартного отклонения от математического ожидания. Возьмем его за основу, используя в качестве величин распределение уровней звукового давления в помещении.

А теперь договоримся, что значение μ на горизонтальной шкале - это среднее значение уровня звукового давления по всему помещению, а именно - наше математическое ожидание. Значение σ берем за 2 дБ (-20% +25% по абсолютному значению), поскольку вероятный разброс величин относительно ожидаемого может быть различным. Теперь наша задача понять, какой разброс нас удовлетворит, а какой будет считаться неприемлемым. Если на всей измеряемой площади давление одинаковое, то график превратится в прямую линию. Чем больше разброс величин, тем более крутым будет подъем и спад графика данной функции. Так вот, при достаточно равномерном звуковом поле большинство величин сконцентрировано вблизи среднего значения. И этим достаточно равномерным покрытием мы можем считать зону в пределах 1го стандартного отклонения, т.е. если на 68% от всей площади помещения уровень давления колеблется в пределах +-2 дБ от среднего по полному частотному диапазону, то требование выполнено. Правда, увидеть подобную статистику распределения давлений можно лишь проведя акустический расчет.

Несмотря на то, что в стандартах ISO или AES такая интерпретация не зафиксирована, в практике она нередко применяется и в целом отражает реальность, поэтому может служить для Вас хорошим ориентиром и отправной точкой в определении равномерности покрытия площади.

Но не забывайте, что усредненное по всему диапазону значение не всегда описывает полную картину.

Чёрный ящик

Ну что ж, с потолочными громкоговорителями вроде бы разобрались, насколько это было возможно в этом формате. А как быть с настенными системами? Всё ли так просто с ними, как мы привыкли думать? В целом значительно проще просто потому, что, как правило, мы крайне ограничены в размещении корпусных акустических систем - стены, углы, колонны. И при том далеко не любая точка стены доступна под установку громкоговорителя - где-то дизайнерская лепнина, где-то телевизор, где-то вентиляция и так далее.

И одно дело, когда нужно озвучить 100 кв. метров - подобрал угол раскрытия, раскидал по углам 4 громкоговорителя, и всё, готова система - а как поступать с большей площадью? Ищем несущие колонны посреди помещения, радуемся их наличию и облепляем их громкоговорителями. Ну а что делать - вариантов-то нет. Согласен, но с уточнениями. За ответом, как обычно, стоит обратиться к науке.

Вот пример расположения акустических систем в помещении.


Рис. 8. Расположение настенных громкоговорителей на колоннах

В общем смысле всё хорошо, и при правильном выбор громкоговорителей и правильном монтаже проблем не будет. Забегая вперед, скажу, что все из представленных мной далее схем расположения имеют право на существование, но с некими оговорками.

В случае если громкоговорители полнодиапазонные, с раскрытием в сумасшедшие 150 градусов (и такое бывает), расположение их в непосредственной близости друг от друга создаст Вам очень интересную картину интерференции. Чтобы долго не разглагольствовать, в этот раз сразу продемонстрирую акустический расчет, поскольку что-то более наглядное и доступное для понимания придумать сложно.


Рис. 9. Диаграмма уровня звукового давления при расположении громкоговорителей на колоннах в октавной полосе с центром на 500 Гц

Обратите внимание на полученные «лепестки» - это как раз и есть результат сложения и вычитания двух когерентных волн, и расположение их, конечно же, меняется в зависимости от длины волны. Ту же самую картину можно наблюдать при расположении громкоговорителей в кластерах - для правильного сложения волн нужно принимать ряд мер как при проектировании, так и при настройке, но это уже совсем другая история. На всякий случай я обозначу одно очевидное следствие этого факта: в результате интерференции тембр звуковой программы может быть серьезно искажен из-за вычитания некоторых частотных составляющих. Многие специалисты к несчастью, уверены, что любые тембральные искажения исправляются с помощью измерительного микрофона, спектроанализатора и эквалайзера, и искренне удивляются, пытаясь при настройке АЧХ системы «вытянуть» потерянную при интерференции частоту. А на графике ничего не происходит, сколько ни увеличивай гейн фильтра - на +6 дБ, на +12 дБ, да хоть два эквалайзера последовательно включи. Давление на этой частоте просто отсутствует, и взяться ему неоткуда, если в силу одной из множества причин в этом диапазоне произошло вычитание волн.

А теперь возьмем и попробуем избавиться от этих проблем, да еще и удешевим систему, уменьшив количество громкоговорителей.


Рис. 10. Расположение настенных громкоговорителей на колоннах


Рис. 11. Диаграмма уровня звукового давления при расположении громкоговорителей на колоннах в полном частотном диапазоне.

Получается вполне прилично: интерференционные проблемы решены, покрытие в зоне между колоннами близко к идеальному, когерентное сложение волн тоже не критично. В качестве бюджетного варианта такой дизайн вполне жизнеспособен - главное, чтобы шаг колонн позволил Вам уложиться в стандартное отклонение. Но некий нюанс всё же есть. И корень его закопан глубоко в фундаментальной науке.

Благодаря физиологии слуха и, вероятно, эволюции человек способен локализовывать звуковые события, т.е. определять, откуда прибыла звуковая волна - эту способность просто необходимо было выработать для выживания. А как быть когда звуковых волн много, как, например, в первобытной пещере, где помимо прямого звука от источника существует бесчисленное количество отражений, прибывающих со всех сторон? Очень просто. Достаточно было выработать способность определять направление первой волны, которая однозначно по кратчайшему пути прибудет непосредственно из условной пасти хищника, а любое отражение точно пройдёт больший путь и придёт с неким опозданием. Это явление описывает Закон первого волнового фронта (он же Precedence Effect). При наличии нескольких идентичных волн, приходящих с задержкой, мозг определяет направление исключительно по первой волне, даже если вторая и последующие имеет более высокий уровень (превышение до 10 дБ) и приходит с запаздыванием до 30 мс. Подробнее об этом занимательном эффекте и его описании можно прочитать в литературе по психоакустике.

Так к чему всё это? Теперь давайте смоделируем слушателя, движущегося по длине помещения по прямой траектории, и проследим, как для него будет меняться локализация звука. В процессе движения мимо первого громкоговорителя человек будет четко слышать звук слева, по мере его приближения к условной границе раскрытия соотношение интенсивностей волн слева и справа изменяется, поскольку в поле зрения появляется второй громкоговоритель. Наш объект достиг точки равного расстояния между громкоговорителями и обе волны когерентно сложились, дав ему +3 дБ к уровню давления, а локализация звука мгновенно перескочила в точку равного расстояния между источниками, т.е. как раз в то место, где находится в данный момент голова объекта. А следующий же шаг резко сместит звуковое событие вправо, поскольку волна от второго источника теперь будет приходить первой.

В принципе, ничего критичного в этом нет. Но если предполагаются постоянные перемещения клиентов по площади, как, например, в магазине, будет ли им комфортно слушать скачущий из точки в точку звук? Далеко не каждый слушатель анализирует причины своего дискомфорта и связывает их со звуком, восприятие окружения для него складывается несознательно и состоит из совокупности всех ощущений - визуального, аудиального, тактильного и остальных. И достаточно, чтобы хотя бы одно из них вызывало дискомфорт, чтобы остальные оказались незначительными, а субъективное впечатление было испорчено.

На финишной прямой

Пожалуй, основные вопросы расчета расположения громкоговорителей, были рассмотрены, однако будет не совсем честно с моей стороны не упомянуть о том, что почти все эти расчеты учитывают энергию прямой волны от излучателя. А в условиях реальных помещений, наполняемых не только прямым звуком, но и многочисленными отражениями, интерференционные вычитания, конечно, не будут создавать точки с нулевым звуковым давлением. Отраженные волны будут несколько нивелировать провалы и подъемы, само собой, не избавляя от них полностью, и значительно улучшать равномерность покрытия, компенсируя собой недостаток прямого звука в удаленных от его источника точках.

Кстати, один из интересных методов создания нелокализуемого фонового звучания системы основан на использовании реверберации помещения на пользу фоновому звуку. Заключается он в расположении всех акустических систем «лицом» в потолок. Такое расположение практически полностью избавляет слушателя от прямого звука из громкоговорителя, вся энергия, получаемая им, - это множество отраженных волн со всех направлений. Крайне интересный получается эффект в плане пространственности звучания. Единственный минус такого решения - ограничение по контенту. Быстрая поп или рок музыка, не рассчитанная на столь серьезное влияние реверберации, вряд ли прозвучит хорошо из такой системы.

P.S. А что, без кабеля не запоёт?

Несмотря на кажущуюся второстепенность вопроса о кабельных трассах, трудно переоценить важность спикерного (акустического) кабеля для любой звуковой системы. Говорю об этом с полной уверенностью, поскольку, к сожалению, в моей практике не всегда имеется возможность диктовать клиенту, какой кабель ему закупить, и это иногда приводит к немым сценам в стиле чеховского Ревизора, когда на объекте узнаётся, что для звуковой системы был проложен кабель ШВВП. В ответ на свой вопрос я получаю вполне резонный ответ - «А что, работает же!». Работает. Только так работает, что лучше б не работало. В общем, вы понимаете…

И именно поэтому привожу методику расчета сечения кабеля. Те из Вас, для кого она очевидна, и кто прекрасно знает, как делаются такие расчеты, могут смело пропускать эту часть статьи - ничего нового и доселе науке неизвестного я не приведу. А вот если вдруг Вы впервые столкнулись с необходимостью расчета, то эта информация будет полезна ввиду её прикладной применимости.

Расчет эффективного тока:

Расчет эффективной мощности, выделяемой на нагрузке:

100В линии.

Расчет суммарного сопротивления громкоговорителей в линии:
,где

Количество громкоговорителей на линии
- номинальная мощность одного громкоговорителя (Tap setting)

Остальные расчеты выполняются аналогично низкоомным линиям.

Суммарное сопротивление нагрузки в 100-вольтовой линии, как можно заметить, обычно получается не менее 1000 Ом. При таком высоком сопротивлении единицы Ом сопротивления кабеля незначительно влияют на общее сопротивление линии, и, следовательно, увеличивают потери мощности незначительно по сравнению с низкоомным подключением.

Теперь немного об интерпретации результатов. Как определить, какая потеря мощности является допустимой? В общем случае пороговым значением падения уровня мощности на кабеле принято считать 0,5 дБ. Это соответствует потере в 10% относительно номинальной мощности. Например, для 8-омного громкоговорителя допустимым номиналом в 1 кВт предельного по этим нормам падения мощность достигает на линии сечением 2.5 кв.мм длиной в 30 метров. Много это или мало, конечно, решать Вам, и решение тут зависит от конкретной ситуации, но практика показывает, что увеличение сечения кабеля с 2.5 кв.мм до, например, 4 кв.мм существенно не повысит стоимость инсталляции. Поэтому я всегда рекомендую укладываться в 0,5 дБ, ведь это совершенно не трудно сделать. Да и зачем нам терять на линии драгоценные Ватты, когда мы имеем возможность добиться максимальной эффективности системы?

И, несмотря на то, что к трансляционным линиям требования существенно ниже, использование правильного кабеля поможет Вам заставить систему работать эффективнее. Более того, если в Вашей практике Вы не проводили экспериментов по оценке качества звука на разных кабелях (при прочих равных), то поверьте мне на слово, влияние сечения кабеля на звучание действительно заметно на слух. Особенно это касается низкочастотной области - диапазона, при передаче которого развивается наибольшая мощность, и который наиболее требователен к току и демпинг-фактору.

Поэтому, используя так любимую многими аналогию, давайте не будем заливать в Мерседес S-класса 92-ой бензин, а потом удивляться, почему не достигается заявленная производительность.

Как можно заметить по формулам, единственная величина, которая остается неизвестной для расчета кабеля - это его сопротивление, выраженное в Ом/км. Его значение можно найти в спецификации к кабелю. Для этого придется сначала выбрать сечение кабеля навскидку, взять соответствующее значение сопротивления, подставить в формулу и провести расчет. В случае, если Вы получите превышение падения мощности, или наоборот, сечение окажется избыточным, то придется выбрать кабель другого сечения и вернуться к исходной точке расчета. Начинать расчет я обычно рекомендую с сечения 2х2.5 кв.мм (7,5-8 Ом/км) для низкоомных линий и 2х1.5 кв.мм (около 13 Ом/км) для трансформаторных линий. Конечно, это заставит Вас потратить некоторое время на расчет, но для удобства Вы можете создать себе калькулятор в Excel, внеся туда формулы и значения сопротивлений кабелей разного сечения - это займет некоторое время разово, зато избавит от необходимости ручного расчета в дальнейшем.


Благодарим компанию DIGIS за предоставленные материалы

Аудиосистема компьютера

Звуковая система компьютера состоит из звукового адаптера (звуковой карты) и электроакустических преобразователях звуковых колебаний (микрофона и звуковых колонок).

Звуковые карты выполняют следующие функции:

§ дискретизацию аналоговых сигналов с частотами 11,025 кГц, 22,05 и 44,1 кГц. Первая частота относится к 8 битовым картам, другие – к 16 битовым;

§ 8- или 16– битовое квантование, кодирование и декодирование с использованием линейной импульсно-кодовой модуляции (ИКМ);

§ одновременно производить запись и воспроизведение звуковой информации (режим Full duplex);

§ ввод сигналов через монофонический микрофон с автоматическим регулированием уровня входного сигнала;

§ ввод и вывод аудиосигналов через линейный вход/выход;

§ микширование (смешивание) сигналов от нескольких источников и выдача суммарного сигнала в выходной канал. В качестве источников используются:

а) аналоговый выход CD-ROM;

в) музыкальный синтезатор;

г) внешний источник, подключенный к линейному входу.

§ управление уровнем суммарного сигнала и сигнала каждого из каналов в отдельности;

§ обработка стереофонических сигналов;

§ синтез звуковых колебаний с использованием частотной модуляции (FM) и волновых таблиц (WT).

Звуковая карта должна использовать не более 13% ресурсов процессора ЭВМ при частоте дискретизации 44,1 кГц и не более 7% - при f g = 22,05 кГц. В звуковой карте осуществляется обработка аналоговых и цифровых сигналов. В соответствии со спецификацией АС-97 (Audio Codec 97 Component Specification ), разработанной фирмой Intel в 1997 году, обработка звуковых сигналов разделена между двумя устройствами:

звуковым кодеком (AC-audio codec ) и

цифровым контроллером (DC – digital controller ).

Аналоговая БИС должна располагаться вблизи звуковых соединителей ввода/вывода и как можно дальше от шумящих цифровых шин. Цифровая БИС располагается ближе к системной шине звуковой карты. Соединение этих микросхем осуществляется по унифицированной внутренней шине AC–link. В современных моделях РС эти микросхемы располагаются на системной плате компьютера. Расширенная модификация БИС звукового кодека дополнительно выполняет функции модема.

В упрощенном виде схема аудиосистемы РС может быть представлена следующим образом (рисунок 10.13). Микрофон (М) осуществляет преобразование акустических колебаний в электрический, а громкоговоритель (Гр.) преобразование электрических колебаний в акустические. Входной сигнал с микрофона усиливается, а с линейного входа подается непосредственно на аналого-цифровой преобразователь.

Рисунок 10.13 - Структура звуковой карты

Дискретный сигнал можно представить в виде произведения исходного сигнала U(t) и дискретизирующей последовательности P(t)

U д (t) = U(t)P(t) .

Дискретизирующая последовательность состоит из очень коротких импульсов. При теоретическом описании эта последовательность представляется δ – импульсами, которые следуют с частотой дискретизации f о = 1/Т о

P(t) = ∑ δ (t - nT o)

Временная диаграмма процесса дискретизации и квантования показана на рисунке 10.14

Синтез звуковых сигналов. Синтезатор предназначен для генерации звуков музыкальных инструментов, соответствующие определенным нотам, а также создавать „немузыкальные” звуки: шум ветра, выстрела и т.п.

Одна и та же нота, воспроизводимая на музыкальном инструменте, звучит по разному (скрипка, труба, саксофон). Это вызвано тем, что хотя определенной ноте соответствует колебание конкретной частоты, звуки различных инструментов, кроме основного тона (синусоиды), характеризуются наличием дополнительных гармоник – обертонов. Именно обертоны определяют тембровый окрас голоса музыкального инструмента.

Рисунок 10.14– Временная диаграмма оцифровки входного сигнала

Созданный с помощью музыкального инструмента звуковой сигнал состоит из трех характерных фрагментов – фаз. Так, например, при нажатии клавиши рояля амплитуда звука сначала быстро растет до максимума, а затем немного спадает (рисунке 10.15). Начальная фаза звукового сигнала называется атакой. Длительность атаки для различных музыкальных инструментов варьируется от единиц до десятков и даже сотен мс. После атаки начинается фаза „поддержки”, в течение которой звуковой сигнал имеет стабильную амплитуду. Слуховое ощущение высоты звука формируется как раз на стадии поддержки.

Далее следует участок с относительно быстрым затуханием уровня сигнала. Огибающая колебаний во время атаки, поддержки и затухания называется амплитудной огибающей. Различные музыкальные инструменты имеют разные амплитудные огибающие, тем не менее, отмеченные фазы характерны практически для всех музыкальных инструментов, за исключением ударных.

Для создания электронного аналога реального звука, т.е. для синтеза звука, необходимо воссоздать огибающие гармоник, из которых состоит реальный звук. Существует несколько методов синтеза. Одним из первых и наиболее изученных является аддитивный синтез. Звук в процессе синтеза формируется путем сложения нескольких исходных звуковых волн. Этот метод использовали еще в классическом органе. Специальной конструкцией клапанов при нажатии клавиши заставляли звучать сразу несколько труб. При этом звучащие трубы были настроены либо в унисон или в одну две октавы. При нажатии клавиши первыми начинали звучать короткие трубы, дающие высокие обертоны, затем вступала средняя секция и последними – басы.

При цифровом аддитивном синтезе отдельно формируется N гармоник с частотами от f 1 до f N и амплитудами от A 1 (t) до A N (t). Затем эти гармоники складываются.

Второй метод является разновидностью нелинейного синтеза. Для получения одного музыкального звука используется сигнал одного генератора. Гармоническую окраску получают в результате нелинейных искажений исходного сигнала. Для этого синусоидальный сигнал, формируемый генератором, управляемым кодом (ГУК) с амплитудой A 1 и частотой f 1 (рисунок 10.16 а) пропускают через нелинейный элемент с некоторой характеристикой К(х) (рисунок 10.16 б). Зная амплитуду сигнала A 1 и вид характеристики К(х) , можно вычислить спектр сигнала на выходе (рисунок 10.16 в).

Следующим широко распространенным методом является синтез на основе частотной модуляции (широко используется в ЭМИ фирмы Yamaha). При частотной модуляции осуществляется изменение частоты f 0 несущего колебания U(t) = Asin (2πf 0 + φ) по закону модулирующего колебания x (t). Выражения для частотно-модулированного колебание имеет вид

U(t) = Asin (ω o t + Δω∫dt),

Величина изменения частоты несущего колебания Δω 0 =2π f 0 называется девиацией частоты, аотношение отклонения Δf 0 частоты модулированного колебания к частоте модулирующего колебания f m называется индексом частотной модуляции m f = Δf 0 /f m . Изменяя индекс модуляции можно изменять спектр сигнала на выходе модулятора и тем самым достичь качества синтезируемого звука, близкого к естественному звучанию.

Выражения для частотно-модулированного колебание при синусоидальном модулирующем колебании x (t) = sin ω o t имеет вид

U(t) = Asin .

Спектр модулированных сигналов при различных индексах модуляции изображен на рисунке 10.17.

для IBM PC

ВВЕДЕНИЕ

Взаимодействие человека с ЭВМ должно быть прежде всего взаимным (на то оно и общение). Взаимность, в свою очередь, предусматривает возможность общения как человека с ЭВМ, так и ЭВМ с человеком. Неоспоримый факт, что визуальная информация, дополненная звуковой, гораздо эффективнее простого зрительного воздействия. Попробуйте, заткнув уши, пообщаться с кем-нибудь хотя бы минуту, сомневаюсь, что вы получите большое удовольствие, равно как и ваш собеседник. Однако пока многие ортодоксально настроенныепрограммисты/проектировщики до сих пор не хотят признавать, что звуковое воздействие может играть роль не только сигнализатора, но информационного канала, и соответственно от неумения и/или нежелания не используют в своих проектах возможность невизуального общения человека с ЭВМ, но даже они никогда не смотрят телевизор без звука. В настоящее время любой крупный проект, не оснощенный средствами multimedia (в дальнейшем под словом "средства multimedia" мы будем прежде всего понимать совокупность аппаратно/программных средств, дополняющие традиционно визуальные способы взаимодействия человека с ЭВМ) обречен на провал.

ОСНОВНЫЕ МЕТОДЫ ОЗВУЧИВАНИЯ

Есть много способов заставить компьютер заговорить или заиграть.

1. Цифроаналоговое преобразование (Digital to Analogue (D/A)conversion). Любой звук (музыка или речь) содержаться в памяти компьютера в цифровом виде (в виде самплов) и с помощью DAC трансформируются в аналоговый сигнал, который подается на усиливающую аппаратуру, а затем на наушники, колонки, etc.

2. Синтез. Компьютер посылает в звуковую карту нотную информацию,а карта преобразует ее в аналоговый сигнал (музыку). Существует два способа синтеза:

а) Frequency Modulation (FM) synthesis , при котором звук воспроизводит специальный синтезатор, который оперирует математическим представлением звуковой волны (частота, амплитуда, etc) и из совокупности таких искусственных звуков создается практически любое необходимое звучание.

Большинство систем, оснащенных FM-синтезом показывают очень неплохие результаты на проигрывании "компьютерной" музыки, но попытка симулировать звучание живых инструментов неочень хорошо удается. Ущербность FM-синтеза состоит в том,что с его помощью очень сложно (практическиневозможно) создать действительно реалистическую инструментальную музыку, с большим наличием высоких тонов (флейта, гитара, etc). Первой звуковой картой, которая стала использовать эту технологию, был легендарный Adlib, которыйдля этой целей использовал чип из синтеза YamahaYM3812FM. Большинство Adlib-совместимых карт (SoundBlaster,Pro Audio Spectrum) также используют эту технологию, толькона других более современных типах микросхем, таких какYamaha YMF262 (OPL-3) FM.

б) синтез по таблице волн (Wavetable synthesis), при этомметоде синтеза заданный звук "набирается" не из синусов математических волн, а из набора реально озвученных инструментов - самплов. Самплы сохраняются в RAM или ROM звуковой карты. Специальный звуковой процессор выполняет операции над самлами (спомощью различного рода математическихпреобразований изменяется высота звука, тембр, звук дополняется спецэффектами).

Так как самплы - оцифровки реальныхинструментов, они делают звук крайне реалистичным. До не давнего времени подобная техника использовалась только вhi-end инструментах, но она становится все более популярной теперь. Пример популярной карты, использующей WSGravis Ultra Sound (GUS).

3. MIDI. Компьютер посылает на MIDI-интерфейс специальные коды,каждый из которых обозначает действие, которое должен произ вести MIDI-устройство (обычно это синтезатор) (General) MIDI- это основной стандарт большинства звуковых плат. Звуковаяплата, самостоятельно интерпретирует, посылаемые коды и приводит им в соответствие звуковые самлы (или патчи), хранящиеся в памяти карты. Количество этих патчей в стандарте GM равно 128. На PC - совместимых компьютерах исторически сложилисьдва MIDI-интерфейса: UART MIDI и MPU-401. Первый рализован вSoundBlaster"s картах, второй использовался в ранних моделяхRoland.

ЗВУКОВЫЕ ВОЗМОЖНОСТИ СЕМЕЙСТВА IBM PC

Уже на самых первых моделях IBM PC имелся встроенный динамик, который однако не был предназначен для точного воспроизведения звука: он не обеспечивал воспроизведения всех частот слышимого диапазона и не имел средств управления громкостью звучания. И хотя PC speaker сохранился на всех клонах IBM до сего дня - это скорее дань традиции, чем жизненная необходимость, ибо динамик никогда не играл сколь-нибудь серьезной роли в общении человека с ЭВМ.

Однако, уже в модели PCjr появился специальный звуковой генератор TI SN76496A, который можно считать предвестником современных звуковых процессоров. Выход этого звукового генератора, мог быть подключен к стерео-усилителю, а сам он имел 4 голоса (не совсем корректное высказывание - на самом деле микросхема TI имела четыре независимых звуковых генератора, но с точки зрения программиста это была одна микросхема, имеющая четыре независимых канала). Все четыре голоса имели независимое управление громкостью и частотой звучания. Однако из-за маркетинговых ошибок модель PCjr так и не получила широкого распространения, была об"явлена неперспективной, снята с производства и поддержка ее была прекращена. С этого момента фирма IBM больше не оснащала свои компьютеры звуковыми средствами собственной разработки. И с этого момента место на рынке прочно заняли звуковые платы.

ОБЗОР ЗВУКОВЫХ КАРТ

Своеобразный "внебрачный сын" PC и желания человека услышатьприличный звук с минимумом финансовых затрат. Covox недаромназывают "SoundBlaster для бедных" ибо стоимость его на порядок ниже самой дешевой звуковой карты. Суть Covox"a крайнепроста - на любой стандартной IBM-совместимой машине обяза тельно присутствует параллельный порт (обычно он используется под принтер). На этот порт можно посылать 8-ми битовые коды, которые после простого смешивания на выходе дадут вполнеудовлетворительное mono звучание.

К сожалению из-за того, что основные производители программного обеспечения игнорировали это простое и остроумное устройство (сговор с производителями звуковых карт), то никакойпрограммной поддержки covox так и не получил. Однако, не составляет труда самостоятельно написать драйвер для covox"a и заменить им драйвер любой 8-ми битовой звуковой карты, котораяиспользуется в DAC-режиме, или немного изменить код программы,перенаправив 8-ми битовую оцифровку, скажем в 61-ый порт ППИ.

The SoundBlaster Pro (SB-pro) The Creative Labs" SoundBlaster (SB) была первой Adlib-совместимой звуковой картой, которая могла записывать и играть 8-ми битовые самплы, поддерживала FM-синтез с помощь микросхемы Yamaha YM3812. Оригинальная mono-модель SB была оснащена одной такой микросхемой, а более новая стерео-модель - двумя. Наиболее продвинутая модель из этого семейства SB-pro. 2.0, эта карта содержит наиболее современную микросхему FM-синтеза (стандарт OPL-3). SB-pro способен производить оцифровку/проигрывание реального звука с частотой до 44.1 Hz (частота CD-проигрывателей) в стерео режиме. Также с помощь внешних драйверов эта карта поддерживает General MIDI интерфейс. Содержит встренный 2-х ватный предусилитель и контроллер CDD (обычно Matsushita).

External line in.

SB compatible MIDI,

SB CD-ROM interface.

SB-pro была полностью совместима с Adlib-картой, что обеспечила ей потрясающей успех на рынке недорогих домашних звуковых систем (прежде всего это касалось игр). И хотя профессионалы были недовольны неестественным "металлическим" звуком, да и симуляция MIDI оставляла желать лучшего, но эта карта пришлась по вкусу многочисленным поклонникам компьютерных игр, которые стимулировали разработчиков вставлять в свои игры поддержку SundBlaster-карт, чем окончательно закрепили лидерство Creative Labs на рынке. И теперь любая программа, которая претендует на то, что бы издавать звук на чем-то отличным от PC-speaker просто обязана поддерживать, ставшим de-facto стандартом SB. В противном случае она рискуeт быть просто не замеченной.

SoundBlaster 16 (SB 16) это улучшенная версия SB-pro,котoрая способна записывать и воспроизводить 16-и битовый стерео-звук. И конечно SB16 полностью совместима с Adkib & SB. SB-16 способна проигрывать 8-и и 16-и битовые стерео самплы на частоте до 44.1 KHz с динамической фильтрацией звука (эта карта позволяет в процессе проигрывания подавить нежелательный диапазон частот). SB16 также может быть оснащен специальной микросхемой ASP (Advanced (Digital) Signal Processor), который может осуществляю компрессию/ декомпрессию звука "на лету", разгружая тем самым CPU для выполнения других задач. Подобно SB-pro SB-16 осуществляет FM-синтез с помощью микросхемы Yamaha YMF262 (OPL-3). Также возможно дополнительно установить специальную плату расширения WaveBlaster, который обеспечивает более качественное звучание в режиме General MIDI.

Pro Audio Spectrum Plus and Pro Audio Spectrum 16 The Media Vision"s

Pro Audio Spectrum Plus и -16 (PAS+ and PAS-16), это одна из многих попыток пополнить семейство SB-подобных карт. Обе карты почти идентичны, исключая то, что PAS-16 поддерживает 16-и битовый самплинг. Обе карты способны доводить частоту проигрывания до 44.1 KHz, динамически фильтровать звуковой поток. Подобно SB-pro и SB-16, PAS осуществляет FM-синтез через микросхему Yamaha YMF262 (OPL-3)

Поддерживаемые входные устройства:

External line in.

PC speaker (wow !).

Поддерживаемые выходные устройства:

Audio line out (headphones, amplifier),

SCSI (not just for CD-ROM, but also for tape-streamers,

optical drives, etc),

General MIDI (requires optional MIDI Mate),

Несмотря на то, что Media Vision утверждает, что ее изделия полностью совместимы со стандартом SB, однако это не совсем так и многие люди получали неприятные неожиданности от этой карты, когда пытались использовать ее как SB. Однако, это некоторым образом компенсируется великолепным стерео-звучанием и очень низким уровнем шумов.

The Gravis UltraSound

The Advanced Gravis"

Gravis UltraSound (GUS) это несомненный лидер в области WS-синтеза. Стандартный GUS имеет "на борту" 256 или 512 килобайт памяти для хранения самплов (называемых так же патчами), с помощью проигрывания которых GUS и генерирует все звуковые эффекты и музыку. GUS может работать на частоте самплирования до 44.1 KHz и может осуществлять 16-и битовое стерео-звучание. С записью несколько сложнее - первоначально стандартные модели GUS осуществляли только 8-и битовую запись звука, но новые модели (GUS MAX) способны осуществлять и 16-и битовую запись. В целом звук, воспроизводимый GUS"ем является более реалистичным (из-за использования WS-синтеза, вместо FM), ну и разумеется GUS обеспечивает великолепную поддержку General MIDI из-за того, что ему нет необходимости "конструировать" все разнообразие звуков из набора синусообразных волн, - в его распоряжении находится специальная библиотека размером около 6M, инструменты из которой он может загружать в процессе воспроизведения.

Поддерживаемые входные устройства:

Audio Line In.

Поддерживаемые выходные устройства:

Audio Line Out,

Amplified Audio Out,

Speed compensating joystick (up to 50 Mhz),

General MIDI (requires optional MIDI adapter),

SCSI CD-ROM (requires optional SCSI interface card).

GUS не является SB-совместимой картой и не поддерживает стандарта SB или Adlib. Некоторая совместимось, однако может быть достигнута путем программной эмуляции с помощью специальных драйверов SBOS (Sound Board Operating System), поставляемых вместе с GUS"ем. Однако на практике, удовлетворительная работа SBOS явление скорее случайное, чем закономерное. Кроме того SBOS значительно замедляет работу процессора, что делает практически непригодным GUS для работы multimedia приложения, написанных исключительно для SB. Все же исключительные звуковые качества GUS"я заставили производителей программного обеспечения включать драйверы для этой карты в свои изделия. И хотя поддержка стандарта GUS еще не стало таким-же обычным делом, как и поддержа стандарта SB, но не вызывает никакого сомнения, что второй по значимости после SB является карта GUS.

Проблемы продвижения GUS на современный игровой рынок затруднено тем, что в настоящее время 45% игр пишется на Miles Design AIL 2.0 - 3.15, 50% на HMI SOS 3.0 - 4.0, остальные 5% на самопальных звуковых библиотеках. Как следует поддерживать GUS научилась только AIL 3.15 и то только почти. До этого (AIL 3.0-, HMI 4.0-) перед загрузкой игры запускалась LOADPATS.EXE или что-то подобное (MEGAEM...), которая грузит все (!!!) тембры, которые использует данная игра (а всего в стандартной 512-и килобайтной памяти GUS"я помещается 30-50 тембров), в AIL 3.15 чуть-чуть гуманнее - тембры грузятся по мере надобности (почти) но не выгружаются(!!), таким образом ситуция сводится к предыдущей. Я уж молчу, что оригинальные тембры используют редкие единицы фирм производителей и очень хорошо понимаю остальных - ради одного GUS"а покупать тембры и "перетягивать" музыку нет смысла. Hе говоря уже о проблемах производителей с созданием музыки под стандартные тембры и придумывании, как бы их запихнуть в 512/256K.

The Roland LAPC-1 and SCC-1

The Roland LAPC-1 это полупрофессиональная звуковая карта, базирующаяся на Roland MT-32Module. LAPC тождественнен MIDI-интерфейсу на PC-картах. Он содержит 128 инструментов. LAPC-1 использует комбинированный способ построения звучания ноты: каждая нота состоит из 4 "partials", каждый из которых может быть самплом или простой звуковой волной. Общее число partials"ов ограниченно 32"я, следовательно одновременно может играть всего 8 инструментов,также присутствует 9-ый канал для перкуссии. Помимо 128-и инструментов LAOC-1 содержит 30 перкуссионных звуков и 33 звуковых эффекта. The SCC-1 это дальнейшее развитие LAPC-1. Подобно LAPC-1 он содержит MPU-MIDI интерфейс, но в в свою очередь является полноценным WS-синтез картой. Он содержит 317 самплов (патчей), зашитых во внутреннюю память ROM. Патч может состоять из 24 partials"ов, но большинство патчей состоят из одного partials"a. Одновременно может быть проигранно 15 инструментов и одна перкуссия. Хотя возможность изменения внутренних самплов отсутствует, это в какой-то мере компенсируется наличием двух звуковых эффектов: hall и echo. Одним из самых серьезных недостатков карт семейства Roland является то, что ни одна из них не оснащена DAC/ADC, и не содержит контроллера CD-ROM, что делает невозможным ее применение в системах multimedia, удовлетворяющих стандарту MPC.

Качество звучания LAPC-1 очень высоко. Некоторые патчи (подобно пианино или свирели) превосходят по качеству аналогичные инструменты GUS"я. Качество воспроизводимых звуковых эффектов также очень высоко. Качество звука SCC-1 можно признать просто выдающимся. Что заставляет признать карты Roland одними из лучших для создания профессиональной инструментальной музыки, однако они полностью непригодны для эксплуатации их в системах multimedia. Кроме того карты Roland не обладают совместимостью ни с одним современным звуковым стандартом.

Другие карты

Adlib и SB совместимая карта с SCSI и MIDI-интерфейсом.

Базируется на микросхеме Yamaha OPL-3 FM. 20 каналов.

Улучшенное качество звука по сравнению с оригинальным Adlib"ом.

12-и битовый самплинг и игра на частоте до 44.1 KHz.

Подобно Adlib Gold 1000, но осуществляет 16-и битовый самплинг.

Базируется на микросхеме Yamaha YMF3812 FM. 11 каналов.

8-ми битовое моно звучание на частоте до 22 KHz. Совместима состандартом SB. Содержит MIDI-интерфейс.

Adlib и SB совместимая карта, базирующаяся на микросхемеYamaha YM3812FM. 11 каналов. 8-ми битовое стерео звучание начастоте до 44.1 KHz. Содержит MIDI-интерфейс.

Turtle Beach MultiSound

Базируется на микросхеме Motorola 56001 DSP. Содержит 384 16-тибитовых самплов. 15 каналов. Спецэффекты. Стерео звучание начастоте до 44.1 KHz. Не совместима ни с каким другим стандартом.

AudioBahn 16 from Genoa Systems

Базируется на микросхеме Arial from Sierra semiconductor.

Adlib и SB совместимая карта c SCSI и MIDI-интерфейсом. Содер жит 1M самплов в ROM. 32 канала. 16-ти битовое стерео звучаниена частоте до 44.1 KHz.

ТХХ ЗВУКОВЫХ ПЛАТ: ОСНОВНЫЕ ПОНЯТИЯ

Перед тем как перейти к следующему разделу, который затрагивает практические вопросы приобретения звуковой платы, необходимо оговорить ряд терминов:

Частотная характеристика (FrequencyResponse)

Показывает насколько хорошо звуковая система воспроизводит звук во всем частотном диапазоне. Идеальное устройство должно одинаково передавать все частоты от 20 до 20000 Гц. И хотя на практике на частотах выше 18000 и ниже 100 может наблюдаться снижение характеристики на величину -2дБ из-за наличия фильтра высоких/низких частот, однако считается что отклонение ниже -3дБ недопустимо.

Отношение сигнал/шум (S/N Ratio)

Представляет собой отношение значений (в дБ) неискаженного максимального сигнала платы к уровню шумов электроники, возникающих вы собственных электрических схемах платы. Так как человек воспринимает шум на разных частотах по-разному, была разработана стандартная сетка А-взвешивания, которая учитывает раздражающий уровень шума. Это число обычно и имеется ввиду, когда говорят о S/N Ratio. Чем это соотношение выше, тем звуковая система качественнее. Снижение этого параметра до 75 дБ недопустимо.

Шумыквантования

Остаточные шумы, характерные для цифровых устройств, которые возникают из-за неидеального преобразования сигнала из аналоговой в цифровую форму. Этот шум может быть измерен только в присутствии сигнала и показывается как уровень (в дБ) относительно максимально допустимого выходного сигнала. Чем меньше этот уровень, тем качество звука выше.

Суммарные нелинейные искажения (total harmonic distortion + noise) Отражает влияние искажений, вносимых аппаратурой усиления звука и шумов, генерируемых самой платой. Он измеряется в процентах от уровня неискаженного выходного сигнала. Устройство с уровнем помех более 0.1% не может считаться качественным.

Разделение каналов

Просто число, показывающее до какой степени левый и правый каналы остаются взаимно независимыми. В идеале разделение каналов должно быть полным (абсолютный стереоэффект), однако на практике наблюдается проникновение сигналов из одного канала в другой. На качественном stereo-device разделение каналов не должно быть меньше 50 дБ.

Динамический диапазон

Выраженная в дБ разность между max и min сигналом, которая плата может пропустить. Обычно динамический диапазон измеряется на частоте 1Khz. В идеальной цифровой аудиосистеме динамический диапазон должен быть близок к 98дБ.

Интермодуляционные искажения

Потенциальное усиление

Максимальный коэффициент усиления, обеспечиваемый предусилителем звуковой платы. Желательно иметь высокое потенциальное усиление при низком входном напряжении. Низким считается напряжение в 0.2В, которое соответствует типичному выходному сигналу бытового магнитофона.

КАКУЮ ПЛАТУ ВЫБРАТЬ?

Как можно было увидеть выше в данный момент на рынок выброшено просто огромное число звуковых систем для персональных компьютеров. Следовательно выбор звуковой платы становиться делом нелегким, ведь каждая из них имеет свои достоинства и недостатки, и не существует абсолютных фаворитов, как и абсолютных аутсайдеров. И все же возьмем на себя смелость, в заключение, дать несколько советов тем, кто собрался оснастить свой компьютер современной звуковой системой.

1. В любом случае следует остановить свой выбор на 16-и битовойзвуковой плате, которая поддерживает частоту дискретизации неменее 44Khz. Это даст вам потенциальную возможность слушатьзвук с качеством CD-диска.

2. Если вы собираетесь оснастить свой компьютер накопителемCD-ROM, то желательно что бы выбранная вами звуковая картауже несла на себе контроллер CD-ROM"a, выбранной вами конструкции.

3. Ну и наконец следует определиться для каких целей вам необходима звуковая система, насколько высокие требования выпред"являете к звуковой карте и какой суммой денег вы можетепожертвовать. Все это заставляет разбить все множество звуковых плат на несколько классов. Внутри каждого класса звуко вые системы обладают примерно одинаковым качеством, что значительно облегчает выбор.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. P.Norton "Programmer"s guide to the IBM PC"- Microsoft Press 1985

2. Толковый словарь по вычислительным системам / под редакциейВ.Иллингуорта и др. - М, Машиностроение, 1989

3. PC Magazine/Russian edition, 07.95- SK Press, Moscow

4. Sound Card review by Jerry van Waardenberg- comp.sys.ibm.pc.soundcard

Звуковая система персонального компьютера служит для воспроизведения звуковых эффектов и речи, сопровождающей воспроизводимую видеоинформацию, и включает:

  • модуль записи/воспроизведения;
  • синтезатор;
  • модуль интерфейсов;
  • микшер;
  • акустическую систему.

Компоненты звуковой системы (исключая акустическую систему) конструктивно оформляются в виде отдельной звуковой платы или частично реализуются в виде микросхем на материнской плате компьютера.

Как правило, сигналы на входе и выходе модуля записи/воспроизведения имеют аналоговую форму, но обработка звуковых сигналов происходит в цифровой форме. Поэтому основные функции модуля записи/воспроизведения сводятся к аналого-цифровому и цифро-аналоговому преобразованиям.

Для этого входной аналоговый сигнал подвергается импульсно-кодовой модуляции (ИКМ), суть которой заключается в дискретизации времени и представлении (измерении) амплитуд аналогового сигнала в дискретные моменты времени в виде двоичных чисел. Необходимо так выбрать частоту дискретизации и разрядность двоичных чисел, чтобы точность аналого-цифрового преобразования соответствовала требованиям, предъявляемым к качеству воспроизведения звука.

Согласно теореме Котельникова, если шаг дискретизации по времени, отделяющий соседние отсчеты (измеренные амплитуды), не превышает половины периода колебаний высшей составляющей в частотном спектре преобразуемого сигнала, то дискретизация времени не вносит искажений и не приводит к потерям информации. Если для высококачественного звучания достаточно, чтобы воспроизводился спектр шириной в 20 кГц, то частота дискретизации должна быть не ниже 40 кГц. В звуковых системах персональных компьютеров (ПК) обычно принимают частоту дискретизации, равную 44,1 или 48 кГц.

Ограниченная разрядность двоичных чисел, представляющих амплитуды сигналов, обусловливает дискретизацию величин сигнала. В звуковых картах в большинстве случаев применяют 16-разрядные двоичные числа, что соответствует 216 уровням квантования или 96 дБ. Иногда используют 20- или даже 24-разрядное аналого-цифровое преобразование.

Очевидно, что повышение качества звучания путем увеличения частоты f дискретизации и числа k уровней квантования приводит к существенному росту объема S получающихся цифровых данных, так как

S = f t log2k / 8,

где t — длительность звукового фрагмента, S, f и t — измеряются в Мбайтах, МГц и секундах соответственно. При стереофоническом звучании объем данных увеличивается вдвое. Так, при частоте 44,1 кГц и 216 уровней квантования количество информации для представления звукового стереофонического фрагмента длительностью в 1 мин составляет около 10,6 Мбайт. Для снижения требований как к емкости памяти для хранения звуковой информации, так и к пропускной способности каналов передачи данных используют сжатие (компрессию) информации.

Модуль интерфейсов используется для передачи оцифрованной звуковой информации к другим устройствам ПК (памяти, акустической системе) через посредство шин компьютера. Пропускной способности шины ISA, как правило, недостаточно, поэтому используют другие шины — PCI, специальный интерфейс музыкальных инструментов MIDI или некоторые другие интерфейсы.

С помощью микшера можно смешивать звуковые сигналы, создавая полифоническое звучание, накладывать музыкальное сопровождение на речь, сопровождающую мультимедийные фрагменты и т.п.

Синтезатор предназначен для генерирования звуковых сигналов, чаще всего для имитации звучания различных музыкальных инструментов. Для синтеза используют частотную модуляцию, таблицы волн, математическое моделирование. Исходные данные для синтезаторов (коды нот и типов инструментов) обычно представляют в формате MIDI (расширение MID в имени файлов). Так, при применении метода частотной модуляции управляют частотой и амплитудой суммируемых сигналов от основного генератора и генератора обертонов. Согласно методу таблицы волн результирующий сигнал получают, комбинируя оцифрованные образцы звуков, полученных от реальных музыкальных инструментов. В методе математического моделирования вместо экспериментально полученных образцов используют математические модели звуков.