Эквивалентные преобразования электрических цепей. Расчет электрических цепей постоянного тока методом эквивалентных преобразований Метод преобразования электрических цепей

Закон Ома – падение напряжения на элементе равно произведению величины сопротивления этого элемента на величину тока, протекающего через него.

Первый закон Кирхгофа – сумма токов, втекающих в узел, равна сумме токов, вытекающих из узла.

Второй закон Кирхгофа – в замкнутом контуре алгебраическая сумма напряжений источников электрической энергии равна алгебраической сумме падений напряжений на элементах контура. При обходе контура в произвольно выбранном направлении значения напряжений берутся с плюсом, если направление обхода контура и направления напряжений совпадают и берутся с минусом, если этого совпадения нет.

Расчет методом эквивалентного преобразования

Этот метод применяется для не очень сложных пассивных электрических цепей, такие цепи встречаются довольно часто, и поэтому этот метод находит широкое применение. Основная идея метода состоит в том, что электрическая цепь последовательно преобразуется ("сворачивается") до одного эквивалентного элемента, как это показано на рис. 1.13, и определяется входной ток. Затем осуществляется постепенное возвращение к исходной схеме ("разворачивание") с последовательным определением токов и напряжений.

Последовательность расчёта:

1. Расставляются условно–положительные направления токов и напряжений.

2. Поэтапно эквивалентно преобразуются участки цепи. При этом на каждом этапе во вновь полученной после преобразования схеме расставляются токи и напряжения в соответствии с п. 1.

3. В результате эквивалентного преобразования определяется величина эквивалентного сопротивления цепи.

4. Определяется входной ток цепи с помощью закона Ома.

5. Поэтапно возвращаясь к исходной схеме, последовательно находятся все токи и напряжения.

Рассмотрим этот метод на примере (рис. 1.15). В исходной схеме расставляем условно–положительные направления токов в ветвях и напряжений на элементах. Нетрудно согласиться, что под действием источника E с указанной полярностью направление токов и напряжений такое, какое показано стрелками. Для удобства дальнейшего пояснения метода, обозначим на схеме узлы а и б. При обычном расчете это можно не делать.

Затем, объединяя все последовательно соединенные элементы, завершаем эквивалентное преобразование схемы (рис. 1.15, в):

В последней схеме (рис. 1.15, в) находим ток I 1:

Теперь возвращаемся к предыдущей схеме (рис. 1.15, б). Видим, что найдCенный ток I 1 протекает через R 1 , R 2,3 , R 4 и создает на них падение напряжения. Найдем эти напряжения:

.Возвращаясь к исходной схеме (рис. 1.15, а), видим, что найденное напряжениеU аб прикладывается к элементам R 2 и R 3 .

Значит, можем записать, чтоU 2 = U 3 = U а,б

Токи в этих элементах находят из совершенно очевидных соотношений:

Итак, схема рассчитана.

расчет с помощью законов кирхгофа

Этот метод наиболее универсален и применяется для расчета любых цепей. при расчете этим методом первоначально определяются токи в ветвях, а затем напряжения на всех элементах. токи находятся из уравнений, полученных с помощью законов кирхгофа. так как в каждой ветви цепи протекает свой ток, то число исходных уравнений должно равняться числу ветвей цепи. число ветвей принято обозначать через n . часть этих уравнений записываются по первому закону кирхгофа, а часть – по второму закону кирхгофа. все полученные уравнения должны быть независимыми. это значит, чтобы не было таких уравнений, которые могут быть получены путем перестановок членов в уже имеющемся уравнении или путем арифметических действий между исходными уравнениями. при составлении уравнений используются понятия независимых и зависимых узлов и контуров. рассмотрим эти понятия.

независимым узлом называется узел, в который входит хотя бы одна ветвь, не входящая в другие узлы. если число узлов обозначим через к , то число независимых узлов равно (к –1). на схеме (рис. 1.16) из двух узлов только один независим.

независимым контуром называется контур, который отличается от других контуров хотя бы одной ветвью, не входящей в другие контура. в противном случае такой контур называется зависимым .

если число ветвей цепи равно n , то число независимых контуров равно [n – (к –1)].

в схеме (рис. 1.16) всего три контура, но только два независимых контура, а третий – зависим. выделять независимые контура можно произвольно, т. е. в качестве независимых контуров можно выбрать при первом расчете одни, а при втором расчете (повторном) – другие, которые раньше были зависимыми. результаты расчета будут одинаковыми.

если по первому закону кирхгофа составить уравнения для (к –1) независимых узлов, а по второму закону кирхгофа составить уравнения для [n – (к –1)] независимых контуров, то общее число уравнений будет равно:

(K –1) + [n – (K –1)] = n .

Это означает, что для расчёта имеется необходимое число уравнений.

Последовательность расчёта:

1. Расставляем условно – положительные направления токов и напряжений.

2. Определяем число неизвестных токов, которое равно числу ветвей (n ).

3. Выбираем независимые узлы и независимые контура.

4. С помощью первого закона Кирхгофа составляем (К –1) уравнений для независимых узлов.

5. С помощью второго закона Кирхгофа составляем [n – (К –1)] уравнений для независимых контуров. При этом напряжения на элементах выражаются через токи, протекающие через них.

6. Решаем составленную систему уравнений и определяем токи в ветвях. При получении отрицательных значений для некоторых токов, необходимо их направления в схеме изменить на противоположные, которые и являются истинными.

7. Определяем падения напряжений на всех элементах схемы.

Рассмотрим последовательность расчета на примере схемы, приведенной на рис. 1.16. Учитывая направление источника E , расставляем условно–положительные направления токов и напряжений. В схеме три ветви, поэтому нам необходимо составить три уравнения. В схеме два узла, следовательно, из них только один независимый. В качестве независимого узла выберем узел 1. Для него запишем уравнение по первому закону Кирхгофа:

I 1 = I 2 + I 3 .

Далее необходимо составить два уравнения по второму закону Кирхгофа. В схеме всего три контура, но независимых только два. В качестве независимых контуров выберем контур из элементов E R 1 –R 2 и контур из элементов R 2 – R 3 . Обходя эти два контура по направлению движения часовой стрелки, записываем следующие два уравнения:

E = I 1 ,R 1 + I 2 R 2 ,

0 = – I 2 R 2 + I 3 R 3 .

Решаем полученные три уравнения и определяем токи в ветвях. Затем через найденные токи по закону Ома определяем падения напряжений на всех элементах цепи.

расчет методом контурных токов

Сложные схемы характеризуются наличием значительного числа ветвей. В случае применения предыдущего метода это приводит к необходимости решать систему из значительного числа уравнений.

Метод контурных токов позволяет заметно уменьшить число исходных уравнений. При расчёте методом контурных токов используются понятия независимого контура и зависимого контура, которые нам уже известны. Кроме них в этом методе используются ещё следующие понятия:

собственный элемент контура – элемент, относящийся только к одному контуру;

общий элемент контура – элемент, относящийся к двум и более контурам цепи.

Обозначаем, как и раньше, через К число узлов, а через n число ветвей цепи. Тогда число независимых контуров цепи определяется по уже известной формуле [n – (К –1)].

Метод основывается на предположении, что в каждом независимом контуре течёт собственный контурный ток (рис. 1.17), и вначале находят контурные токи в независимых контурах. Токи в ветвях цепи определяют через контурные токи. При этом исходят из того, что в собственных элементах контура токи совпадают с контурным током данного контура, а в общих элементах ток равен алгебраической сумме контурных токов тех контуров, к которым принадлежит данный элемент.

Последовательность расчёта:

1. Определяется число ветвей (n ) и число узлов (К ) цепи. Находится число независимых контуров [n – (К –1)].

2. Выбирается [n – (К –1)] не зависимых контура.

3. Выбирается условно–положительное направление контурных токов в каждом из независимых контуров (обычно показывается стрелкой).

4. Для каждого из независимых контуров составляется уравнение по второму закону Кирхгофа. При этом падение напряжения на собственных элементах определяется как произведение контурного тока на величину сопротивления, а на общих элементах – как произведение алгебраической суммы всех контурных токов, протекающих через данный элемент, на величину его сопротивления. Обход контура производится, как правило, в направлении собственного контурного тока.

5. Решается система из [n – (К –1)] уравнений и находятся контурные токи.

6. Токи в ветвях схемы находятся следующим образом:

– в собственных элементах контура ток равен контурному току;

– в общих элементах контура ток равен алгебраической сумме токов, протекающих через данный элемент.

Рассмотрим в общем виде применение этого метода для расчёта схемы, приведенной на рис. 1.17.

В этой схеме три ветви и два узла, следовательно, в ней только два независимых контура. Выбираем эти контура и показываем в них направления (произвольно) контурных токов I к1 и I к2 . Составляем два уравнения по второму закону Кирхгофа:

.

Решив эту систему уравнений, находим контурные токи I к 1 и I к 2 . Затем определяем токи в ветвях:

I 1 = I к 1 , I 3 = I к 2 , I 2 = I к 1 – I к 2 .

РАСЧЕТ МЕТОДОМ НАЛОЖЕНИЯ

Метод применяется для расчета цепей, содержащих несколько (два и более) источников электрической энергии. Подчеркнем, что этот метод применим для расчета только линейных цепей. Метод основывается на том положении, что в каждой ветви цепи ток равен алгебраической сумме токов, создаваемых каждым источником. Следовательно, необходимо определить токи, создаваемые каждым источником в отдельности, а затем их просуммировать с учетом направлений.

Последовательность расчета:

1. В электрической цепи оставляют только один источник ЭДС. Вместо исключенного источника ЭДС ставится или резистор, величина которого равна величине внутреннего сопротивления источника ЭДС, или перемычка, если внутреннее сопротивление источника равно нулю.

2. Определяются токи во всех ветвях, создаваемые этим источником ЭДС.

3. Оставляется в цепи следующий источник ЭДС, а с остальными поступают аналогично тому, как сказано в п. 1.

4. Определяются токи в цепи, создаваемые вторым источником ЭДС.

5. Аналогично поступают с оставшимися источниками.

6. Истинные токи в ветвях цепи определяются как алгебраическая сумма токов в этих ветвях, созданных каждым из источников.

Рассчитаем цепь, изображенную на рис. 1.18, методом наложения. Будем считать, что внутренние сопротивления источников ЭДС равны нулю.

В начале оставляем источник E 1 , а источник E 2 убирается и в место него ставится перемычка (рис. 1.18, б). В полученной схеме находим токи методом эквивалентного преобразования:


Затем оставляем только источник E 2 , а вместо E 1 ставится перемычка (рис. 1.18, в). В полученной схеме определяем токи в ветвях также методом эквивалентного преобразования:

Находим действительные токи в исходной схеме (рис. 1.18, а) алгебраическим суммированием найденных токов.

Ток I 1 равен разности тока I 11 и тока I 12:

I 1 = I 11 – I 12 .

Ток I 2 равен сумме токов I 21 и I 22 , т. к. они совпадают по направлению:

I 2 = I 21 + I 22 .

Ток I 3 равен разности тока I 32 и тока I 31:

I 3 = I 32 – I 31 .

Метод эквивалентных преобразований заключается в том, что электрическую цепь или ее часть заменяют более простой по структуре электрической цепью. При этом токи и напряжения в непреобразованной части цепи должны оставаться неизменными. В любое последовательное соединение может входить произвольное число сопротивлений (резисторов) и источников ЭДС, а также не более одного источника тока.

Наличие более одного источника тока в соединении исключается вследствие логического противоречия, т.к. в последовательном соединении через все элементы протекает одинаковый ток и этот ток равен току источника. Если же источников тока несколько, то они должны формировать несколько различных токов, что невозможно по характеру их соединения. Присутствие источника в соединении означает лишь то, что ток в этом соединении задан, поэтому без ущерба для общности выводов источник тока можно вынести за пределы соединения и не рассматривать. Тогда в общем случае в соединение будут входитьm сопротивлений и n источников ЭДС (рис а). Не изменяя режима работы соединения, их можно переместить так, чтобы образовались две группы элементов: сопротивления и источники ЭДС (рис. б). Для этой цепи можно написать уравнение Кирхгофа в виде:

U=IR1+IR2+…+IRm+E1+…-En-1+En=I(R1+R2+…Rm)+E1…-En-1+En=IR+E

Таким образом, любое последовательное соединение элементов можно представить последовательным соединением одного сопротивленияR и одного источника ЭДС E Причем, общее сопротивление соединения равно сумме всех сопротивлений

а общая ЭДС – алгебраической сумме

6.Метод узловых потенциалов

Ток в любой ветви схемы можно найти по закону Ома для участка цепи, содержащего ЭДС. Для того чтобы можно было применить закон Ома, необходимо знать потенциалы узлов схемы. Метод расчеты электрических цепей, в котором за неизвестные принимают потенциалы узлов схемы, называют методом узловых потенциалов. Допустим, что в схеме n узлов. Так как любая (одна) точка схемы может быть заземлена без изменения токораспределения в ней, один из узлов схемы можно мысленно зазамлить, т. е.принять потенциал его равным нулю. При этом число неизвестных уменьшается с n до n-1. Число неизвестных в методе узловых потенциалов равно числу уравнений, которые необходимо составить для схемы по первому закону Кирхгофа. В том случае, когда число узлов без единицы меньше числа независимых контуров в схеме, данный метод является более экономным, чем метод контурных токов. Первый закон Кирхгофа: Алгебраическая сумма сил токов для каждого узла в разветвленной цепи равна нулю I1+I2+I3+…+In=0

7.Метод двух узлов

Часто встречаются схемы, содержащие всего два узла. Наиболее рациональным методом расчета токов в них является метод двух узлов. Под методом двух узлов понимают метод расчета электрических цепей, в котором за искомое (с его помощью определяют затем токи ветвей) принимают напряжение между двумя узлами схемы. Схема имеет два узла. Потенциал точки 2 примем равным нулю φ2 = 0. Составим узловое уравнение для узла 1.

φ1(g1+g2+g3)- φ2(g1+g2+g3)=E1g1-E3g3

U12= φ1- φ2= φ1= (E1g1-E3g3)/g1+g2+g3, где

g1=1/R1, g2=1/R2, g3=1/R3 – проводимости ветвей

В общем виде

В знаменателе формулы - сумма проводимостей параллельно включенных ветвей. В числителе - алгебраическая сумма произведений ЭДС источников на проводимости ветвей, в которые эти ЭДС включены. ЭДС в формуле записывается со знаком "плюс", если она направлена к узлу 1, и со знаком "минус", если направлена от узла 1.После вычисления величины потенциала φ1 находим токи в ветвях, используя закон Ома для активной и пассивной ветви.

8 .Метод контурных токов

При расчете методом контурных токов полагают, что в каждом независимом контуре схмы течет свой контурный ток. Уравнения составляют относительно контурных токов, после чего через них определяют токи ветвей. Т. о., метод контурных токов можно определить как метод расчета, в котором за искомые принимают контурные токи. Число неизвестных в этом методе равно числу уравнений, которые необходимо было составить для схемы по второму закону Кирхгофа: алгебраическая сумма произведений сопротивления каждого из участков любого замкнутого контура разветвленной цепи постоянного тока на силу тока на этом участке равна алгебраической сумме ЭДС вдоль этого контура.I1R1+I2R2=E1+E2

Токи в сопротивлениях R1 и R2 равны соответствующим контурным токам. Ток в сопротивлении R3, являющийся общим для обоих контуров, равен разности контурных токов I11 и I22, так как эти токи направлены в ветви с R3 встречно. Выбираются независимые контуры, и задаются произвольные направления контурных токов.В нашем случае эти токи направлены по часовой стрелке. Направление обхода контура совпадает с направлением контурных токов. Уравнения для этих контуров имеют следующий вид: I11(R1+Ri1)+I11R3-I22R3=E1,

I22(Ri2-R2)+I22R3-I11R3=-E2 Перегруппируем слагаемые в уравнениях I11(R1+Ri1+R3)-I22R3=E1=E11, -I11R3+I22(Ri2+R2+R3)=-E2=E22 Суммарное сопротивление данного контура называется собственным сопротивлением контура. Cобственные сопротивления контуров схемы R11=R1+Ri1+R3, R22=Ri2+R2+R3 Сопротивление R3, принадлежащее одновременно двум контурам, называется общим сопротивлением этих контуров. R12=R21=R3 где R12 - общее сопротивление между первым и вторым контурами;R21 - общее сопротивление между вторым и первым контурами.E11 = E1 и E22 = E2 - контурные ЭДС.В общем виде уравнения (4.4) и (4.5) записываются следующим образом I11R11+I22R12=E11, I11R21+I22R22=E22 Собственные сопротивления всегда имеют знак "плюс".

Общее сопротивление имеет знак "минус", если в данном сопротивлении контурные токи направлены встречно друг другу, и знак "плюс", если контурные токи в общем сопротивлении совпадают по направлению. Решая уравнения совместно, находим контурные токи I11 и I22 , затем от контурных токов переходим к токам в ветвях. I1=I11, I2=I22,I3=I11-I22.

9.Метод наложения. Данный метод справедлив только для линейных электрических цепей и является особенно эффективным, когда требуется вычислить токи для различных значений ЭДС и токов источников в то время, как сопротивления схемы остаются неизменными. Данный метод основан на принципе наложения (суперпозиции), который формулируется следующим образом: ток в k – й ветви линейной электрической цепи равен алгебраической сумме токов, вызываемых каждым из источников в отдельности.Аналитически принцип наложения для цепи, содержащей n источников ЭДС и m источников тока, выражается

соотношением:Здесь- комплекс входной проводимости k – й ветви, численно равный отношению тока к ЭДС в этой ветви при равных нулю ЭДС в остальных ветвях;- комплекс взаимной проводимости k – й и i– й ветвей, численно равный отношению тока в k – й ветви и ЭДС в i– й ветви при равных нулю ЭДС в остальных ветвях.Входные и взаимные проводимости можно определить экспериментально или аналитически, используя их указанную смысловую трактовку, при этом, что непосредственно вытекает из свойства взаимности. Аналогично определяются коэффициенты передачи тока, которые в отличие от проводимостей являются величинами безразмерными.

Доказательство принципа наложения можно осуществить на основе метода контурных токов.

Если решить систему уравнений, составленных по методу контурных токов, относительно любого контурного тока, например, то получим(2),где

-определитель системы уравнений, составленный по методу контурных токов;- алгебраическое дополнение определителя.Каждая из ЭДС в (2) представляет собой алгебраическую сумму ЭДС в ветвях i–го контура. Если теперь все контурные ЭДС в (2) заменить алгебраическими суммами ЭДС в соответствующих ветвях, то после группировки слагаемых получится выражение для контурного тока в виде алгебраической суммы составляющих токов, вызванных каждой из ЭДС ветвей в отдельности. Поскольку систему независимых контуров всегда можно выбрать так, что рассматриваемая h-я ветвь войдет только в один-й контур, т.е. контурный токбудет равен действительному токуh-й ветви, то принцип наложения справедлив для токовлюбых ветвей и, следовательно, справедливость принципа наложения доказана.Таким образом, при определении токов ветвей при помощи метода наложения следует поочередно оставлять в схеме по одному источнику, заменяя остальные их внутренними сопротивлениями, и рассчитать составляющие искомых токов в этих схемах. После этого полученные результаты для соответствующих ветвей суммируются – это и будут искомые токи в ветвях исходной цепи.

Электрические цепи считают простыми, если они содержат только последовательное или только параллельное соединение элементов.

Участок цепи, содержащий и параллельное, и последовательное соединение элементов называют сложным или участком со смешанным соединением элементов.

Преобразования электрических цепей считают эквивалентными, если при их выполнении напряжения и токи на интересующих нас участках не изменяются.

При преобразовании сложных электрических цепей пользуются последовательным методом, то есть последовательно преобразуют участки цепи, имеющие простое соединение элементов.

4.3.1. Эквивалентное преобразование схемы при последовательном соединении элементов

Рассмотрим комплексную схему замещения электрической цепи, состоящей из последовательного соединения отдельных элементов (рис. 4.6). Данная цепь представляет собой контур, у которого через все элементы протекает общий для всех элементов ток. Эквивалентно преобразуем схему к одному элементу, но так чтобы напряжение и ток на выводах схемы сохранили свои значения. Это возможно, когда сопротивление исходной цепи и эквивалентной цепи одинаковы. На основании закона Ома и второго закона Кирхгофа в комплексной форме можно записать уравнение электрического равновесия

Напряжение и ток для обеих схем одинаковы, когда

Вывод. При эквивалентном преобразовании, при последовательном соединении элементов их комплексные сопротивления складываются.

1) Эквивалентное преобразование сопротивлений

Рассмотрим электрическую цепь схема, которой приведена на рис.4.7. Эквивалентно преобразуем сопротивления R 1 и R 2 к одному сопротивлению R экв.

Учитывая, что Z R =R, и соотношение полученное выше, получим R экв =R 1 +R 2 .

2) Эквивалентное преобразование емкостей.

Рассмотрим электрическую цепь схема, которой приведена на рис.4.8. Эквивалентно преобразуем емкости С 1 и С 2 к одной эквивалентной емкости С экв.

Учитывая, что Z С =1/(jωC), и соотношение полученное выше, получим

.

3) Эквивалентное преобразование индуктивностей

Рассмотрим электрическую цепь схема, которой приведена на рис.4.9 . Эквивалентно преобразуем индуктивностиL 1 и L 2 к одной эквивалентной индуктивности L экв.

Учитывая, что Z L =jωL, и соотношение полученное выше, получим L экв =L 1 +L 2 .

4.3.2. Эквивалентное преобразование схемы при параллельном соединении элементов

Рассмотрим комплексную схему замещения электрической цепи, состоящей из параллельного соединения отдельных элементов (рис. 4.10). Данная цепь содержит два узла, между которыми включены все элементы. Общим для всех элементов является напряжение на них. Эквивалентно преобразуем схему к одному элементу, но так чтобы напряжение и ток на выводах схемы сохранили свои значения. Это возможно, когда сопротивление исходной цепи и эквивалентной цепи одинаковы. На основании закона Ома и первого закона Кирхгофа в комплексной форме можно записать уравнение электрического равновесия

I=I 1 +I 2 +…+I n , или (U/Z экв) = (U/Z 1) + (U/Z 2) + …(U/Z n) .

Отсюдаследует, что

(1/Z экв) = (1/Z 1) + (1/Z 2) + … +(1/Z n), или Z экв = 1/[(1/Z 1) + (1/Z 2) + … +(1/Z n)].

Учитывая, (1/Z ) = Y – комплексная проводимость элемента, можно записать, что

Y экв = Y 1 + Y 2 + … + Y n .

Вывод. При эквивалентном преобразовании, при параллельном соединении элементов их комплексные проводимости складываются.

Анализ любой электрической цепи начинается с построения ее модели, которая описывается схемой замещения.

В электрических схемах различают следующие простейшие соединения пассивных элементов: последовательное, параллельное, соединение в виде треугольника и в виде трехлучевой звезды. Прежде чем начинать анализ схемы, желательно проводить предварительные эквивалентные преобразования схемы. Суть таких преобразований состоит в замене некоторой части схемы другой, эквивалентной ей в электрическом отношении, но с более удобной для расчета структурой. Чаще других используют два вида таких преобразований: замену последовательно и параллельно соединенных элементов одним эквивалентным; преобразование трехлучевой звезды в треугольник и обратно.

Эквивалентное сопротивление последовательно соединенных элементов равно арифметической сумме их сопротивлений:

. (1.26)

Эквивалентная проводимость параллельно соединенных резистивных элементов равна арифметической сумме их проводимостей:

. (1.27)

При преобразовании треугольника (рис.1.14) в звезду (рис.1.15) при заданных сопротивлениях сторон треугольника RАБ, RБВ, RBA определяются эквивалентные сопротивления лучей звезды RA, RБ, RB.

Рис. 1.14. Схема цепи – треугольник

Рис. 1.15. Схема цепи – звезда

Эквивалентные сопротивления лучей звезды равны:

При преобразовании звезды в эквивалентный треугольник при заданных RA, RБ, RB эквивалентные сопротивления определяются следующим образом.

Цель лекции №3.

Ознакомившись с данной лекцией, студенты должны знать:

    Цель преобразования электрических цепей.

    Четко различать участки с последовательным и параллельным соединениями при рассмотрении смешанного соединения проводов.

    Уметь преобразовывать соединение треугольник в эквивалентную звезду и обратно.

    Уметь преобразовать источник напряжения в источник тока и обратно.

Преобразование схем электрических цепей.

Целью преобразования электрических цепей является их упрощение, это необходимо для простоты и удобства расчета.

Одним из основных видов преобразования электрических схем является преобразование схем со смешанным соединением элементов. Смешанное соединение элементов – это совокупность последовательных и параллельных соединений, которые и будут рассмотрены в начале данной лекции.

Последовательное соединение.

На рис. 3-1 изображена ветвь электрической цепи, в которой последовательно включены сопротивления R 1 , R 2 ,…,R n . Через все эти сопротивления проходит один и тот же ток I. Напряжения на отдельных участках цепи обозначим через U 1 , U 2 ,…, U n .

Рис. 3-1 Последовательное соединение.

По ЗНК напряжение на ветви

U=U 1 +U 2 +…+U n = IR 1 +IR 2 +…+IR n =I (R 1 +R 2 +…R n)=IRэкв. (1)

Сумма сопротивлений всех участков данной ветви


Называется эквивалентным последовательным сопротивлением.

Поскольку напряжения, которые падают на отдельных сопротивлениях, пропорциональны этим сопротивлениям, можно сказать, что последовательно включенные сопротивления образуют «делитель напряжения». Понятие делителя напряжения широко используется в технике.

Параллельное соединение.

На рис. 3-2 изображена схема электрической цепи с двумя узлами, между которыми включено n параллельных ветвей с проводимостями G 1 , G 2 ,…, G n . Напряжение между узлами U, оно одинаково для всех ветвей.

Рис.3-2 Параллельное соединение (показать преобразованное).

По ЗТК общий то равен сумме токов отдельных ветвей:

I=I 1 +I 2 +…+I n =G 1 U+G 2 U+…+G n U=U (G 1 +G 2 +…+G n)=UGэкв. (2)

Сумма проводимостей всех ветвей, соединенных параллельно

называется эквивалентной проводимостью .

В случае параллельного сопротивления двух ветвей (n=2) обычно пользуются выражениями, в которые входят сопротивления
и
.

Эквивалентное сопротивление двух параллельно соединенных ветвей равно:

. (3)

Поскольку общий ток делится на отдельные токи ветвей пропорционально проводимостям этих ветвей (или, что тоже самое, обратно пропорционально сопротивлениям этих ветвей), можно сказать, что параллельно включенные сопротивления образуют «делитель токов». Понятие делителя токов используется в технике.

Часто при использовании «ручного» расчета электрических цепей необходимо определить, как ток разделяется по отдельным ветвям параллельно соединенных ветвей.

Из формулы (2) следует, что токи ветвей, соединенных параллельно, пропорциональны проводимостям этих ветвей, т.е. токи делятся по ветвям пропорционально сопротивлениям этих ветвей, или, что тоже самое, обратно пропорционально сопротивлениям этих ветвей.

В случае двух параллельно соединенных сопротивления их общее сопротивление (2) равно:

, тогда суммарный ток I , протекающий по этому эквивалентному сопротивлению, создаст напряжение U , равное:

, чтобы найти ток I 1 в сопротивлении R 1 , необходимо разделить выражение на R 1 , а чтобы найти ток I 2 в сопротивлении R 2 найти разделить выражение на R 2:

Полученные выражения для токов иногда называют «правилом плеч», которое гласит: ток делится между параллельно включенными сопротивлениями (в делителе токов) обратно пропорционально этим сопротивлениям.

(4)

Смешанное соединение.

На рис.3-3 показано смешанное соединение электрической цепи:

Рис.3-3 Смешанное соединение.

Эта схема легко приводится к одноконтурной. Сопротивления R 5 и R 6 включены параллельно, поэтому необходимо вычислить эквивалентное сопротивление данного участка по формуле

Для понимания полученного результата можно изобразить промежуточную схему (рис. 3-4).

Сопротивления R 3 , R 4 и R / экв. соединены последовательно, и эквивалентное сопротивление участка c-e-f-d равно:

R экв. =R 3 + R экв. ′ + R 4 .

После этого этапа преобразований схема приобретает вид рис. 3-5.

Затем находим эквивалентное сопротивление участка c-d и суммируем его с сопротивлением R 1 . Общее эквивалентное сопротивление равно:

.

Полученное сопротивление эквивалентно сопротивлению (рис. 3-6) исходной схемы со смешанным соединением. Понятие “эквивалентно” означает, что напряжение U на входных зажимах и ток I входной ветви остаются неизменными на протяжении всех преобразований.

Преобразование треугольника в эквивалентную звезду.

Преобразованием треугольника в эквивалентную звезду называется такая замена части цепи, соединенной по схеме треугольником, цепью, соединенной по схеме звезды, при которой токи и напряжения в остальной части цепи сохраняются неизменными.

Т.е., под эквивалентностью треугольника и звезды понимается то, что при одинаковых напряжениях между одноименными зажимами токи, входящие в одноименные выводы, одинаковы.

Рис. 3-7. Преобразование треугольника в звезду.

Пусть R 12 ; R 23 ; R 31 - сопротивления сторон треугольника;

R 1 ; R 2 ; R 3 - сопротивления лучей звезды;

I 12 ; I 23 ; I 31 - токи в ветвях треугольника;

I 1 ; I 2 ; I 3 - токи, подходящие к зажимам 1, 2, 3.

Выразим токи в ветвях треугольника через подходящие токи I 1 , I 2 , I 3 .

По закону напряжений Кирхгофа сумма падений напряжений в контуре треугольника равна нулю:

I 12 R 12 +I 23 R 23 +I 31 R 31 =0

По закону токов Кирхгофа для узлов 1 и 2

I 31 =I 12 +I 1 ; I 23 =I 12 +I 2

При решении этих уравнений относительно I 12 получим:

Напряжение между точками 1 и 2 схемы треугольника:

Напряжение между этими же точками схемы звезды равно:

U 12 =I 1 R 1 - I 2 R 2 .

Т.к. речь идет об эквивалентном преобразовании, то необходимо равенство напряжений между данными точками двух схем, т.е.

Это возможно при условии:

(5)

Третье выражение получено в результате круговой замены индексов.

Исходя из выражения (5) формулируется следующее правило:

Сопротивление луча звезды равно произведению сопротивлений сторон треугольника, прилегающих к этому лучу, деленному на сумму сопротивлений трех сторон треугольника.

Преобразование звезды в эквивалентный треугольник.

При переходе от звезды к треугольнику известными являются сопротивления R 1 , R 2 , R 3 лучей звезды. Значения сопротивлений треугольника определяются в результате совместного решения уравнений (5):

(6)

Сопротивление стороны треугольника равно сумме сопротивлений прилегающих лучей звезды и произведения их, деленного на сопротивление третьего луча.