Что измеряется в децибелах звук. Что такое децибел? Норма шума в децибелах в квартире

«Шум» - это беспорядочное смешение звуков.


Звуки с низкой и высокой частотой кажутся тише, чем среднечастотные той же интенсивности. С учётом этого, неравномерную чувствительность человеческого уха к звукам разных частот модулируют с помощью специального электронного частотного фильтра, получая, в результате нормирования измерений, так называемый эквивалентный (по энергии, "взвешенный") уровень звука с размерностью дБА (дБ(А), то есть - с фильтром "А").

Человек, в дневное время суток, может слышать звуки громкостью отдБ и выше. Максимальный диапазон частот для человеческого уха, в среднем - от 20 доГц (возможный разброс значений: отдо00 герц). В молодости - лучше слышен среднечастотный звук с частотой 3 КГц, в среднем возрасте - 2-3КГц, в старости - 1КГц. Такие частоты, в первые килогерцы (до Гц - зона речевого общения) - обычны в телефонах и по радио на СВ и ДВ диапазонах. С возрастом, воспринимаемый на слух звуковой диапозон сужается: для высокочастотных звуков - уменьшаясь до 18 килогерц и менее (у пожилых людей, каждые десять лет - примерно на 1000Гц), а для низкочастотных - увеличиваясь от 20 Гц и более.

У спящего человека, основным источником сенсорной информации об окружающей обстановке - становятся уши ("чуткий сон"). Чувствительность слуха, ночью и при закрытых глазах - увеличивается надБ (до первых децибел, по шкале дБА), по сравнению с дневным временем суток, поэтому - громкий, резкий шум с большими скачками громкости, может разбудить спящих людей.

Бесплатная юридическая консультация:


(СНиП3 «Защита от шума»).

большесмерть (шумовое оружие)

Бесплатная юридическая консультация:


Максимально допустимые уровни звука (LАмакс, дБА) - больше "нормальных" на 15 децибел. Например, для жилых комнат квартир допустимый постоянный уровень звука в дневное время - 40 децибелов, а временный максимальный - 55. При постоянно работающем инженерном оборудовании - учитывается поправка - минус 5.

Неслышный шум - звуки с частотами менееГц (инфразвук) и более 20 КГц (ультразвук). Низкочастотные колебания в 5-10 герц могут вызывать резонанс, вибрацию внутренних органов и влиять на работу мозга. Низкочастотные акустические колебания усиливают ноющие боли в костях и суставах у больных людей. Источники инфразвука: автомобили, вагоны, гром от молнии и т.д.

На рабочих местах предельно допустимые, по закону, эквивалентные уровни звука для прерывистого шума: максимальный уровень звука не должен превышать 110 дБА, а для импульсного шумадБАI. Запрещается даже кратковременное пребывание в зонах с уровнями звукового давления свыше 135 дБ в любой октавной полосе.

Для пожарной сигнализации : уровень звукового давления полезного аудиосигнала, обеспечиваемый оповещателем, должен быть не менее 75 дБА на расстоянии 3 м от оповещателя и не более 120 dba в любой точке защищаемого помещения (п.3.14 НПБ).

Бесплатная юридическая консультация:


Бесплатная юридическая консультация:


Для измерения уровня шума применяется прибор шумомер (на фото), который производят в разных модификациях: бытовые (ориентировочная ценат.р, диапазоны измерения:дБ, 31,5 Гц - 8 кГц, фильтры А и С), промышленные (интегрирующие и т.д.) Наиболее распространённые модели: SL, октава, svan. Для измерений инфразвуковых и ультразвуковых шумов - применяются широкодиапазонные шумометры.

Частотные диапазоны звука

среднечастотный0 Гц;

Бесплатная юридическая консультация:


Бесплатная юридическая консультация:


песок сухой / влажный0 /

Уменьшают дальность распространения звука, вдоль поверхности земли - высокие преграды (горы, здания и строения), противоположное направление ветра и его скорость, а так же другие факторы (пониженное атмосферное давление, повышенная температура и влажность воздуха). Расстояния, на которых источник громкого шума почти не слышно - обычно, от 100 метров (при наличии высоких преград или в густом лесу), дом. - на открытой местности (при попутном среднем ветре - дальность увеличивается до километра и более). С расстоянием "теряются" (быстрее гасятся и рассеиваются) более высокие частоты и остаются низкочастотные звуки. Максимальная дальность распространения инфразвука средней интенсивности (человек его не слышит, но воздействие на организм есть) - десятки и сотни километров от источника.

Самые шумные города в России

Это многие областные и районные центры страны, практически все территории крупных транспортных узлов и городские жилые застройки вдоль проспектов и вблизи аэропортов. К данной категории относятся: Москва, Санкт-Петербург, Красноярск, Ростов-на-Дону, Челябинск, Екатеринбург, Пермь, Иркутск, Ярославль, Воронеж, Новокузнецк, Нижний Тагил, Магнитогорск, Омск, Уфа, Самара, Нижний Новгород, Новосибирск, Мурманск, Пермь, Тула, Ульяновск, Кемерово и другие.

Бесплатная юридическая консультация:


Когда правое и левое ухо слышат звуки (например, из наушников плеера, fгерц) - звуки распадаются, в восприятии, на исходные, с их фактической частотой, и бин.эффект исчезает. Разница фаз звуковых волн, приходящих на правое и левое ухо - позволяет определять направление на источник звука / шума, громкость и тембр - расстояние до него.

Международная стандартизация физических параметров

Бесплатная юридическая консультация:


Реакцией на длительное и сильное шумовое воздействие является «тиннитус» - звон в ушах, "шум в голове", который может перерасти в прогрессирующее снижение слуха. Характерно для возрастов старше 30 лет, при ослабленном организме, стрессах, злоупотреблении алкоголем и курении. В простейшем случае, причиной ушного шума или тугоухости может быть серная пробка в ухе, которая легко удаляется врачом-специалистом (промыванием или извлечением). Если воспалён слуховой нерв - это можно вылечить, тоже сравнительно легко (лекарствами, акупунктурой). Пульсирующий шум - более тяжёлый для лечения случай (возможные причины: сужение кровеносных сосудов при атеросклерозе или опухолях, а так же - подвывих шейных позвонков).

Чтобы уберечь слух :

В шумном месте, для защиты органов слуха - использовать противошумные мягкие "беруши", вкладыши или наушники (шумопонижение эффективнее на высоких частотах звука). Их надо подгонять индивидуально под ухо. В полевых условиях - используют и лампочки от карманного фонаря (они не всем, но подходят по размеру). В стрелковом спорте применяют индивидуально отлитые "активные беруши" с электронной начинкой, по цене - как телефон. Хранить их надо в упаковке. Лучше выбирать берши, сделанные из гипоаллергенного полимера, имеющие хороший SNR (шумоподавление), на уровне от 30 дБ и больше. При резких перепадах давления (в самолёте), для его выравнивания и уменьшения боли - нужно использовать специальные бируши с микроотверстиями;

Бесплатная юридическая консультация:


Приёмы, применяемые, обычно, для выравнивания давления с обеих сторон барабанной перепонки уха : глотание, зевание, продувание с закрытым носом. Метод Френзеля - зажав ноздри, с усилием отвести язык назад, по нёбу (при сокращении мышц, откроются носовые полости и евстахиевы трубы). Артиллеристы, производя выстрел - открывают рот или закрывают уши ладонями рук.

Бесплатная юридическая консультация:


Шумомер SL. Бытовые и промышленные шумометры.

Уровень шума – что и как

В параметрах климатического оборудования уровень шума указывается отдельно для наружного и внутреннего блока. Шум внутреннего блока обусловлен звуком воздуха проходящего вентилятор. Поэтому более дорогие модели кондиционеров, как правило, имеют больший размер внутреннего блока по сравнению с более бюджетными аналогичной мощности. Объяснение этому простое: аналогичный объём воздуха, проходя через больший вентилятор вращающийся с меньшей скоростью создаёт меньше шума.

Шум наружного блока прежде всего обусловлен шумом компрессора. Здесь значительно выигрывают инверторные модели кондиционеров. Хотя уровень шума кондиционеров типа on/off (не инверторные) в последнее время также значительно снизился.

Примечание: Таблица составлена по данным производителей

С точки зрения человеческого уха «шум» - это беспорядочное смешение звуков, неблагоприятное для восприятия человеком. Физическая характеристика громкости звука - уровень звукового давления, в децибелах (дБ).

Бесплатная юридическая консультация:


Децибел - это безразмерная единица, применяемая для измерения отношения некоторых величин, в нашем случае – громкости звука. Важно помнить что это не абсолютная величина, как, например, ватт или вольт, а такая же относительная, как кратность («трехкратное увеличение») или проценты, предназначенная для измерения отношения двух других величин. При этом в отличии от процентов или кратности к полученному отношению применяется логарифмический масштаб.

Децибелы широко применяются в областях техники, где требуется измерение величин, меняющихся в широком диапазоне: в радиотехнике, антенной технике, в системах передачи информации, автоматического регулирования и управления, в оптике, акустике и др.

Для лучшего понимания рассмотрим два случая:

1. Что получится, если к шуму 25 дБ увеличить еще на 25 дБ? Шум общей интенсивностью в 50 дБ? Нет - ведь при удвоении числа его логарифм возрастает на

0,3 (с точностью до двух десятичных знаков). Тогда при удвоении интенсивности звука уровень интенсивности увеличивается на

Бесплатная юридическая консультация:


0,3 бела, то есть на

3 дБ, до 28дБ. Это справедливо для любого уровня интенсивности: удвоение интенсивности звука приводит к увеличению уровня интенсивности на 3 дБ .

2. Во сколько раз отличается уровень шума в 20 и 32 дБ? Если бы мы имели дело с линейным ростом, то ответ был бы прост: 32 / 20 =

1,5 раза. Именно такую ошибку чаше всего и допускают покупатели,

Примечание: Обращаем ваше внимание на разницу между дБ и дБА. дБА – акустический децибел, единица измерения уровня шума с учетом восприятия звука человеком. При измерении в дБА удвоение громкости грубо соответствует увеличению уровня шума на 10 дБА. Т.е. для 25 дБА увеличение на 25 дБА

Бесплатная юридическая консультация:


Звуки с низкой и высокой частотой кажутся тише, чем среднечастотные той же интенсивности.

Человек, в дневное время суток, может слышать звуки громкостью от 10 – 15 дБ и выше. Максимальный диапазон частот для человеческого уха, в среднем от 20 доГц (возможный разброс значений: от 12 – 24 до–герц). В молодости лучше слышен среднечастотный звук с частотой 3 кГц, в среднем возрасте 2 – 3 кГц, в старости 1 кГц. Такие частоты, в первые килогерцы (до 1000 – 3000 Гц зона речевого общения) - обычны в телефонах. С возрастом, воспринимаемый на слух звуковой диапазон сужается: для высокочастотных звуков он уменьшаясь до 18 килогерц и менее (у пожилых людей, каждые десять лет примерно на 1000 Гц), а для низкочастотных - увеличиваясь от 20 Гц и более.

У спящего человека основным источником информации об окружающем мире являются уши. Чувствительность слуха резко обостряется по сравнению с дневным временем суток, поэтому незаметный днем шум, а особенно шум со скачками громкости, может легко разбудить спящих людей.

Отсутствия на стенах помещений звукопоглощающих материалов (ковров, специальных покрытий), звук будет громче из-за многократного отражения (эха) от стен, потолка, мебели), что увеличит итоговый уровень шума на несколько децибел.

Шкала шумов (уровни звука в дБА – акустический децибел, единица измерения уровня шума с учетом восприятия звука человеком)

Бесплатная юридическая консультация:


Допустимый максимум по нормам для жилых помещений ночью, с 23 до 7 ч.

(СНиП3 «Защита от шума»).

Норма для жилых помещений днём, с 7 до 23 ч. (СНиП3 «Защита от шума»).

Максимально допустимое звуковое давление для наушников плеера.

При уровнях звука свыше 160 децибел возможен разрыв барабанных перепонок и лёгких, больше 200 – смерть

Бесплатная юридическая консультация:


Разговорная речь колеблется от 45 децибел (дБ) до 60 децибел (дБ), в зависимости от громкости голоса;

Максимально допустимые уровни звука больше «нормальных» на 15 децибел. Например, для жилых комнат квартир допустимый постоянный уровень звука в дневное время – 40 децибелов, а временный максимальный – 55. При постоянно работающем инженерном оборудовании учитывается поправка: минус 5.

Неслышный шум – звуки с частотами менееГц (инфразвук) и более 20 КГц (ультразвук). Низкочастотные колебания в 5-10 герц могут вызывать резонанс, вибрацию внутренних органов и влиять на работу мозга. Низкочастотные акустические колебания усиливают ноющие боли в костях и суставах у больных людей. Источники инфразвука: автомобили, вагоны, гром от молнии и т.д.

Как и чем измеряется шум

Для измерения уровня шума применяется прибор шумомер. Шумомеры бывают бытовые (диапазоны измерения 30 – 130 дБ, 31,5 Гц – 8 кГц,) и промышленные. Для измерений инфразвуковых и ультразвуковых шумов применяются широкодиапазонные шумомеры.

Одним из важнейших вопросов является зависимость уровня звука от его частоты. Нижняя частотная граница восприятия звука человеком составляет около 30 Гц, а верхняя - не выше 18 кГц; поэтому шумомер должен был бы регистрировать звуки в том же диапазоне частот. Но тут возникает серьезное затруднение. Дело в том что чувствительность человеческого уха для различных частот не одинакова; так, например, чтобы звуки с частотой 30 Гц и 1 кГц звучали одинаково громко, уровень звукового давления первого из них должен быть на 40 дБ выше, чем второго. И следовательно, показания шумомера сами по себе еще не многого стоят.

Бесплатная юридическая консультация:


По этому все современные шумомеры снабжены корректирующими контурами, благодаря которым можно снизить чувствительность шумомера к низкочастотным и очень высокочастотным звукам и тем самым приблизить частотные характеристики прибора к свойствам человеческого уха. Обычно шумомер содержит три корректирующих контура, обозначаемых А, В и С; наиболее полезна коррекция А; коррекцию В применяют лишь изредка; и ещё реже коррекцию С.

Чаще всего уровень бытового и промышленного шума принимают равным уровню, измеренному в дБ при помощи шумомера с коррекцией А, и выражают его в единицах дБА. Хотя человеческое ухо воспринимает звук несравненно более утонченно, чем шумомер, и поэтому звуковые уровни, выраженные в дБА, ни в коей мере не соответствуют точно физиологической реакции, но простота этой единицы делает ее чрезвычайно удобной для практического применения.

Ещё одним достоинством шкалы дБА является то обстоятельство, что удвоение громкости грубо соответствует увеличению уровня шума на 10 дБА.

Для приближенной оценки уровня шума можно использовать «подручные средства» в виде настольного компьютера, ноутбука, планшета и или смартфона. Конечно такое измерение будет более грубым чем выполненное хотя бы с помощью бытового специализированного шумомера, зато практически бесплатно.

Измеряем уровень шума используя настольный компьютер или ноутбук:

Бесплатная юридическая консультация:


  • Для ПК с MS Windows 8, можно воспользоваться бесплатным приложением Decibel Meter или Asa Tempo. Их можно загрузить с Microsoft App Store (https://www.microsoft.com/en-us/store/apps/windows). Эти приложения, используют микрофон подключенный к вашему компьютеру, внешний или встроенный, и могут измерить звуки громкостью до 96 дБ (Decibel Meter).
  • Для продуктов Apple есть аналогичные программы в iTunes App Store (Decibel 10th - Professional Noise Meter).
  • Вы так же можете использовать звуковые редакторы для измерения громкости шума. Главное что бы программа могла работать с микрофоном в качестве источника звука. Например в Audacity, бесплатном звуковом редакторе (лицензия GNU GPL v2), есть функция измерения уровня входного сигнала. Он доступен для самых разных ОС: MS Windows (10/8/7/Vista/XP), GNU/Linux, Mac OS X. Загрузить его можно с сайта разработчиков по адресу http://www.audacityteam.org/ Пользователи ОС семейства GNU/Linux в большинстве случаем могут поставить его прямо из репозитария своего дистрибутивы.

Для планшета и смартфона:

Микрофон в мобильном устройстве конечно не даст такого качества, как внешний микрофон, зато вы получите возможность измерения уровня звука практически в любом месте. Тем не менее этой точности будет достаточно для оценки уровня шума в большинстве бытовых случаев.

  • Для устройств Apple: Decibel 10th, Decibel Meter Pro, dB Meter, Sound Level Meter;
  • Для устройств под управлением Android: deciBel, Decibel Meter, Noise Meter, Sound Meter;
  • Для устройств под управлением MS Windows Phone: Cyberx Decibel Meter, Decibel Meter Free, Decibel Meter Pro.

Что и как шумит в кондиционере

  1. Компрессор. Он так же является источником низкочастотных (в том числи инфранизкие, распространяющихся в первую очередь по строительным конструкциям) шумов.

В сплит-системах его вклад ниже чем в оконных или мобильных моделях. Так же в мобильных и оконных системах он суммируется с шумом вентилятора и шумом воздушного потока.

  • 2. Вентилятор внутреннего блока. Мотора не должно быть слышно.
  • 3. Качающаяся створка. Ели слышна, обратится в сервис
  • 4. Реле переключения режимов. Слышно на не инверторных («on/off») моделях
  • Шум хладогента: по магистралям слышен только при обогреве, если слышен при охлаждении, значит есть какие то проблемы
  • Что и как шумит в обогревателях

    1. В конвекторах (тепловентиляторах) и тепловых пушках: вентиляторы и воздушный поток. Чем диаметр вентилятора меньше - тем шум больше. На уровень шума так же влияет форма вентиляционной решетки.
    2. В маслянных радиаторах - движение масла при большой мощности
    3. В газовых и дизельных тепловых пушках: пламя

    Гигиенические нормы шума

    Для определения допустимого уровня шума на рабочих местах, в жилых помещениях, общественных зданиях и территории жилой застройки используется ГОСТ 12.1.003-83. ССБТ «Шум. Общие требования безопасности», СН 2.2.4/2.1.8.«Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки». Нормирование шума звукового диапазона осуществляется по предельному спектру уровня шума и по дБА. Этот метод устанавливает предельно допустимые уровни (ПДУ) в девяти октавных полосах со среднегеометрическими значениями частот 31, 63, 125, 250, 500, 1000, 2000, 4000, 8000 Гц.

    Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки

    Бесплатная юридическая консультация:

    Про децибелы, Громкость звука. Уровень шума и его источники

    Физическая характеристика громкости звука - уровень звукового давления, в децибелах (дБ). «Шум» - это беспорядочное смешение звуков.

    Звуки с низкой и высокой частотой кажутся тише, чем среднечастотные той же интенсивности. С учётом этого, неравномерную чувствительность человеческого уха к звукам разных частот модулируют с помощью специального электронного частотного фильтра, получая, в результате нормирования измерений, так называемый эквивалентный (по энергии, «взвешенный») уровень звука с размерностью дБА (дБ(А), то есть - с фильтром «А»).

    Человек, в дневное время суток, может слышать звуки громкостью отдБ и выше. Максимальный диапазон частот для человеческого уха, в среднем - от 20 доГц (возможный разброс значений: отдо00 герц). В молодости - лучше слышен среднечастотный звук с частотой 3 КГц, в среднем возрасте - 2-3КГц, в старости - 1КГц. Такие частоты, в первые килогерцы (до Гц - зона речевого общения) - обычны в телефонах и по радио на СВ и ДВ диапазонах. С возрастом, воспринимаемый на слух звуковой диапозон сужается: для высокочастотных звуков - уменьшаясь до 18 килогерц и менее (у пожилых людей, каждые десять лет - примерно на 1000Гц), а для низкочастотных - увеличиваясь от 20 Гц и более.

    У спящего человека, основным источником сенсорной информации об окружающей обстановке - становятся уши («чуткий сон»). Чувствительность слуха, ночью и при закрытых глазах - увеличивается надБ (до первых децибел, по шкале дБА), по сравнению с дневным временем суток, поэтому - громкий, резкий шум с большими скачками громкости, может разбудить спящих людей.

    В случае отсутствия на стенах помещений звукопоглощающих материалов (ковров, специальных покрытий), звук будет громче из-за многократного отражения (реверберации, то есть - эха от стен, потолка и мебели), что увеличит уровень шума на несколько децибел.

    Шкала шумов (уровни звука, децибел), в таблице

    Допустимый максимум по нормам для жилых помещений ночью, с 23 до 7 ч.

    Норма для жилых помещений днём, с 7 до 23 ч.

    Максимально допустимое звуковое давление для наушников плеера (по европейским нормам)

    При уровнях звука свыше 160 децибел - возможен разрыв барабанных перепонок и лёгких,

    большесмерть (шумовое оружие)

    Максимально допустимые уровни звука (LАмакс, дБА) - больше «нормальных» на 15 децибел. Например, для жилых комнат квартир допустимый постоянный уровень звука в дневное время - 40 децибелов, а временный максимальный - 55.

    Неслышный шум - звуки с частотами менееГц (инфразвук) и более 20 КГц (ультразвук). Низкочастотные колебания в 5-10 герц могут вызывать резонанс, вибрацию внутренних органов и влиять на работу мозга. Низкочастотные акустические колебания усиливают ноющие боли в костях и суставах у больных людей. Источники инфразвука: автомобили, вагоны, гром от молнии и т.д.

    На рабочих местах предельно допустимые, по закону, эквивалентные уровни звука для прерывистого шума: максимальный уровень звука не должен превышать 110 дБА, а для импульсного шумадБАI. Запрещается даже кратковременное пребывание в зонах с уровнями звукового давления свыше 135 дБ в любой октавной полосе.

    При возведении зданий и сооружений, в соответствии с современными, более жесткими требованиями звукоизоляции, должны применяться технологии и материалы, способные обеспечить надёжную защиту от шума.

    Для пожарной сигнализации: уровень звукового давления полезного аудиосигнала, обеспечиваемый оповещателем, должен быть не менее 75 дБА на расстоянии 3 м от оповещателя и не более 120 dba в любой точке защищаемого помещения (п.3.14 НПБ).

    116 дБ(А) - при установке излучателя звука на крыше транспортного средства;

    122 дБА - при установке излуч-ля в подкапотное пространство автотранспорта.

    Изменения основной частоты должны быть от 150 до 2000 Гц. Продолжительность цикла - от 0,5 до 6,0 с.

    Если городской житель, привыкший к постоянному шуму, окажется на некоторое время в полной тишине (в сухой пещере, например, где уровень шума - менее 20 db), то он вполне может испытать депрессивные состояния вместо отдыха.

    Прибор шумометр для измерения уровня звука, шума

    Для измерения уровня шума применяется прибор шумомер (на фото), который производят в разных модификациях: бытовые (ориентировочная ценат.р, диапазоны измерения:дБ, 31,5 Гц - 8 кГц, фильтры А и С), промышленные (интегрирующие и т.д.) Наиболее распространённые модели: SL, октава, svan. Для измерений инфразвуковых и ультразвуковых шумов применяются широкодиапазонные шумометры.

    Частотные диапазоны звука

    Поддиапазоны спектра звуковых частот, на которые настроены фильтры двух- или трёхполосных акустических систем: низкочастотный - колебания до 400 герц;

    среднечастотный0 Гц;

    Скорость звука и дальность его распространения

    Приблизительная скорость слышимого, среднечастотного звука (частотой порядка 1-2 кГц) и максимальная дальность его распространения в различных средах:

    в воздухе - 344.4 метров в секунду (при температуре 21.1 по шкале Цельсия) и примерно 332 м/с - при нуле градусов;

    в воде - приблизительно 1.5 километра в секунду;

    в дереве твёрдых сортов - порядка 4-5 км/с вдоль волокон и в полтора раза меньше - поперёк.

    в нержавеющей стали - 5.8 километров в секунду.

    Полистирол - 2.4 километров в секунду.

    песок сухой / влажный0 /

    Уменьшают дальность распространения звука, вдоль поверхности земли - высокие преграды (горы, здания и строения), противоположное направление ветра и его скорость, а так же другие факторы (пониженное атмосферное давление, повышенная температура и влажность воздуха). Расстояния, на которых источник громкого шума почти не слышно - обычно, от 100 метров (при наличии высоких преград или в густом лесу), дом. - на открытой местности (при попутном среднем ветре - дальность увеличивается до километра и более). С расстоянием «теряются» (быстее гасятся и рассеиваются) более высокие частоты и остаются низкочастотные звуки. Максимальная дальность распространения инфразвука средней интенсивности (человек его не слышит, но воздействие на организм есть) - десятки и сотни километров от источника.

    Если во время грозы вы увидели сильную молнию и через 12 секунд услышали первые раскаты грома - это значит, что молния ударила в четырёх километрах от вас (340 * 12 = 4080 м.) В приблизительных расчётах принимается - три секунды на километр расстояния (в воздушном пространстве) до источника звука.

    Бинауральные биения (Binaural Beat Frequency)

    Когда правое и левое ухо слышат звуки (например, из наушников плеера, f < 1000 герц, f1 - f2 < 25 Гц) двух различных частот - мозг, в результате обработки этих сигналов, получает третью, разностную частоту биения (бинауральный ритм, который равен арифметической разнице их частоты), «слышимую» как низкочастотные колебания, совпадающие с диапазоном обычных мозговых волн (дельта - до 4 Гц, тета - 4-8Гц, альфаГц, бетаГц). Этот биологический эффект учитывается и используется в студиях звукозаписи - для передачи низких частот, не воспроизводимых напрямую динамиками обычных стереосистем (вследствие конструкционных ограничений), но эти способы и методы, при неумелом применении, могут негативно сказаться на психологическом состоянии и настроении слушателя, так как отличаются от естественного, природного восприятия человеческим ухом шумов и звуков.

    В тех местах ионосферы, куда бьют электромагнитные волны достаточной мощности, при устоявшемся (с высокой добротностью сигнала) резонансе Шумана, особенно, на частотах первых его гармоник - появившиеся, при этом, плазменные сгустки начинают излучать инфразвуковые акустические (звуковые) волны. Конкретные ионосферные излучатели существуют до тех пор, пока продолжаются разряды молний в инициирующем грозовом очаге - примерно, до первых десятков минут. Для восьмигерцовой частоты, эти излучающие точки расположены на противоположной стороне земного шара, от источника электромагн. волн. На 14-герцовой - по треугольнику. Локальные, сильно ионизированные области в нижних слоях ионосферы (спорадический слой Еs) и плазменные отражатели - могут быть взаимосвязаны или пространственно совпадать.

    Длительное воздействие шума с уровнем болеедецибелл может привести к частичной или полной потере слуха (на концертах, мощность акустических систем - может достигать десятков киловатт). Так же, при этом могут произойти патологические изменения в сердечно-сосудистой и нервной системе. Безопасны только звуки громкостью до 35 дБ.

    Реакцией на длительное и сильное шумовое воздействие является «тиннитус» - звон в ушах, «шум в голове», который может перерасти в прогрессирующее снижение слуха. Характерно для возрастов старше 30 лет, при ослабленном организме, стрессах, злоупотреблении алкоголем и курении. В простейшем случае, причиной ушного шума или тугоухости может быть серная пробка в ухе, которая легко удаляется врачём-специалистом (промыванием или извлечением). Если воспалён слуховой нерв - это можно вылечить, тоже сравнительно легко (лекарствами, акупунктурой). Пульсирующий шум - более тяжёлый для лечения случай (возможные причины: сужение кровеносных сосудов при атеросклерозе или опухолях, а так же - подвывих шейных позвонков).

    Чтобы уберечь слух:

    Не увеличивать громкость звука в наушниках плеера, пытаясь заглушить внешний шум (в метро или на улице). При этом увеличивается и электромагнитное излучение на мозг от динамика наушника;

    В шумном месте, для защиты органов слуха - использовать противошумные мягкие «беруши», вкладыши или наушники (шумопонижение эффективнее на высоких частотах звука). Их надо подгонять индивидуально под ухо. В полевых условиях - используют и лампочки от карманного фонаря (они не всем, но подходят по размеру). В стрелковом спорте применяют индивидуально отлитые «активные беруши» с электронной начинкой, по цене - как телефон. Хранить их надо в упаковке. Лучше выбирать берши, сделанные из гипоаллергенного полимера, имеющие хороший SNR (шумоподавление), на уровне от 30 дБ и больше. При резких перепадах давления (в самолёте), для его выравнивания и уменьшения боли - нужно использовать специальные бируши с микроотверстиями;

    В помещениях применять шумоизолирующие экологичные материалы для снижения шума;

    При подводном погружении, чтобы не произошёл разрыв барабанной перепонки - вовремя продуваться (проводить продувание ушей зажав нос или глотательным движением). Сразу после дайвинга - нельзя на самолёт. Прыгая с парашютом - так же надо своевременно выравнивать давление, чтобы не получить баротравму. Последствия баротравмы: шум и звон в ушах (субъективный «тиннитус»), снижение слуха, боль в ухе, тошнота и головокружение, в тяжёлых случаях - потеря сознания.

    С простудой и насморком, когда заложен нос и гайморовы пазухи, недопустимы резкие перепады давления: ныряние (гидростатическое давл-е – 1 атмосфера на 10 метров глубины погружения в воду, то есть: две - на десяти, три - на отметке 20 м. и т.д.), парашютные прыжки (0,01 атм. на 100 м. высоты, быстро увеличивается, с ускорением).

    // примерно семь с половиной миллиметров ртутного столба барометра - на каждые сто метров, по высоте.

    Давать своим ушам отдыхать от громкого шума.

    Приёмы, применяемые, обычно, для выравнивания давления с обеих сторон барабанной перепонки уха: глотание, зевание, продувание с закрытым носом. Артиллеристы, производя выстрел - открывают рот или закрывают уши ладонями рук.

    Другие статьи по схожей теме в левом меню «В тему».

    Поиск

    Ресурсы

    Ресурсы, которые нам интересны, а вам будут полезны.

    Статьи тему

    Экономная стройка

    Ваш калькулятор:

    Бренды

    Все права защищены законом РФ и планетой «Земля», 2010–2013 г, ©

    Уровень шума. Что означает 35 дБ и с чем его можно сравнить

    Шумовые характеристики оборудования приведены в виде таблиц, где содержатся:

    • Уровень звуковой мощности шума LWA в дБ(А) с разбивкой по полосам частот, уровни звуковой мощности к входу, к выходу и к окружению вентилятора.
    • Общий уровень звукового давления дБ(А) на расстоянии 3м.

    Полоса частот делится на 8 групп волн. В каждой группе определена средняя частота: 63 Гц, 125 Гц, 250 Гц, 500 Гц, 1000 Гц, 2 кГц, 4 кГц и 8 кГц. Любой шум раскладывается по группам частот и можно найти распределение звуковой энергии по различным частотам.

    Шум от вентилятора распространяется по воздуховоду (воздушному каналу), частично затухает в его элементах и через воздухораспределительные и воздухоприемные решетки проникает в обслуживаемое помещение.

    Основой для проектирования систем вентиляции является акустический расчет - обязательное приложение к проекту вентиляции любого объекта.

    Основные задачи такого расчета: определение октавного спектра вентиляционного шума в расчетных точках и его требуемого снижения путем сопоставления этого спектра с допустимым спектром по гигиеническим нормам. После подбора строительно-акустических мероприятий по обеспечению требуемого снижения шума проводится поверочный расчет ожидаемых уровней звукового давления в тех же расчетных точках с учетом эффективности этих мероприятий.

    ничего не слышно

    почти не слышно

    тихий шелест листьев

    шепот человека (на расстоянии 1м).

    шепот человека (1м)

    шепот, тиканье настенных часов.

    норма для жилых помещений ночью, с 23 до 7 часов утра

    норма для жилых помещений, с 7 до 23 часов

    разговор обычной нромкости

    разговор, пишущая машинка

    Норма для офисных помещений класса А (по европейским нормам)

    норма для контор

    громкий разговор (на расстоянии 1м)

    громкие разговоры (1м)

    крик, звук мотоцикла с глушителем

    громкий крик, звук мотоцикла с глушителем

    громкие крики, грузовой железнодорожный вагон (на расстоянии 7 м)

    звук проезжающего вагона метро (7м)

    звук оркестра, прерывистывые звуки проезжающего вагона метро, раскаты грома

    максимально допустимое звуковое давление для наушников плеера (по европейским нормам)

    Эксперты ВОЗ считают безопасным для здоровья звук в 85 дБ, действующий на человека ежедневно не более 8 часов. 25–30 децибел Такой уровень шума считается комфортным для человека. Это естественный звуковой фон, без которого невозможна жизнь. Кстати… По громкости это сравнимо с шорохом листьев на деревьях – 5–10 дБ, шумом ветра – 10–20 дБ, шепотом – 30–40 дБ. А такжес приготовлением еды на плите – 35–42 дБ, наполнением ванны – 36–58 дБ, движением лифта – 34–42 дБ, шумом холодильника – 42 дБ, кондиционера – 45 дБ. В доме не должно быть слишком тихо. Когда вокруг гробовое молчание, мы подсознательно испытываем беспокойство. Шум дождя, шелест листвы, перезвон подвешенных в дверном проеме колокольчиков, тиканье часов действуют на нас умиротворяюще и даже оказывают целебное воздействие.

    Сборник ответов на ваши вопросы

    KAKRAS.RUЕсли во время грозы вы увидели сильную молнию и через 12 секунд услышали первые раскаты грома — это значит, что молния ударила в четырёх километрах от вас (340 * 12 = 4080 м.) В приблизительных расчётах принимается — три секунды на километр расстояния (в воздушном пространстве) до источника звука. Линия распространения звуковых волн отклоняется в направлении уменьшения скорости звука (рефракция на градиенте температуры), то есть, солнечным днём, когда воздух у поверхности земли теплее, чем вышележащий — линия распространения звуковых волн изгибается вверх, но если верхний слой атмосферы окажется теплее приземного, то звук пойдёт оттуда обратно вниз и слышно будет лучше. Дифракция звука — огибание волнами препятствия, когда его размеры сравнимы с длиной волны или меньше ее.

    Шумовое загрязнение: как защититься?

    Для восьмигерцовой частоты, эти излучающие точки расположены на противоположной стороне земного шара, от источника электромагн. волн. На 14-герцовой — по треугольнику. Локальные, сильно ионизированные области в нижних слоях ионосферы (спорадический слой Еs) и плазменные отражатели — могут быть взаимосвязаны или пространственно совпадать. Как сохранить свой слух Длительное воздействие шума с уровнем более 80-90 децибелл может привести к частичной или полной потере слуха (на концертах, мощность акустических систем — может достигать десятков киловатт).
    Так же, при этом могут произойти патологические изменения в сердечно-сосудистой и нервной системе. Безопасны только звуки громкостью до 35 дБ. Реакцией на длительное и сильное шумовое воздействие является «тиннитус» -звон в ушах, «шум в голове», который может перерасти в прогрессирующее снижение слуха.

    Уровень шума.

    Современная медицина считает громкие звуки одним из грозных врагов здоровья человека. В экологии существует даже понятие «шумовое загрязнение». Кроме слуховых расстройств, могут возникнуть сердечно-сосудистые заболевания, гипертоническая болезнь.

    Нарушаются обмен веществ, деятельность щитовидной железы, мозга. Снижаются память, работоспособность. От шумового стресса появляется бессонница, пропадает аппетит. Высокий уровень шума может вызвать язвенную болезнь, гастрит, психические заболевания.

    Шум через проводящие пути звукового анализатора влияет на различные центры головного мозга, в результате чего нарушается работа разных систем организма. По данным австрийского ученого Гриффита, шум становится причиной преждевременного старения в 30 случаях из 100 и укорачивает жизнь людей в крупных городах на 8–12 лет.

    Норма шума в децибелах в квартире

    Звук воспринимается как мучительный. Приводит к снижению слуха. При интенсивном воздействии шума в 95 дБ и выше возможно нарушение витаминного, углеводного, белкового, холестеринового и водно-солевого обмена. При силе звука 110 дБ возникает так называемое «шумовое опьянение», развивается агрессия.
    Кстати… Мотоцикл, мотор грузовика и Ниагарский водопад – 90 дБ, перепланировка в квартире – 90–100 дБ, газонокосилка – 100 дБ, концерт и дискотека – 110–120 дБ. Согласно ГОСТам, производство с таким уровнем шума является вредным, работники должны регулярно проходить медосмотр. Люди, работающие в таких условиях, в 2 раза чаще страдают гипертонией.


    Рабочим шумных профессий рекомендуется принимать витамины группы В и С. Если плеер включен на полную мощность, то на уши действует звук порядка 110 дБ. Высок риск развития тугоухости (глухоты).

    В "хозяйстве" может пригодиться

    Это «болевой порог», когда звука как такового практически уже не слышно, чувствуется боль в ушах. Кстати… Лидеры по созданию такого шума – аэропорты и вокзалы. Громкость товарного состава при движении составляет более 100 дБ.

    Когда поезд подходит к платформе, уровень шума на перроне составляет чуть меньше – 95 дБ. Даже в километре от взлетно-посадочной полосы уровень шума от взлетающего или садящегося лайнера составляет больше 100 дБ. Уровень шума в метро может достигать 110 дБ на станциях и 80–90 дБ – в вагонах.

    Не стоит чересчур увлекаться караоке. Уровень акустической нагрузки при этом превосходит допустимые пределы, достигая 115 дБ. После такого экстремального вокала слух временно снижается на 8 дБ. 140–150 децибел Шум практически непереносим, возможна потеря сознания, могут лопнуть барабанные перепонки.

    403 forbidden

    Однако, это далеко не так. В данном случае, такая мощность – это мгновенная мощность по импедансу. Упрощая все особенности гармонических колебаний – это мощность, возникающая при определённой частоте в чрезвычайно малый промежуток времени. Такое ещё называют «китайские киловатты». На самом деле мощность в сотни раз меньше.

    • Дизайн.

      Если система не выигрывает по громкости, она может победить по дизайну. В отличие от громкости, этот параметр измерить нельзя и он весьма субъективный.

    • Практичность. На данный момент, рекорд по громкости автомобильной аудиосистемы составляет более 180дб.


      Это является смертельным уровнем. Отсюда следует закономерный вопрос, зачем нужна такая система?

    Как и в любых турнирах и конкурсах здесь есть и награды. Спонсируются такие мероприятия представителями компаний-гигантов аудиотехнической индустрии, вроде Pioneer, Alpine и другими.
    Источники звука 0 Ничего не слышно 5 Почти не слышно 10 Почти не слышно тихий шелест листьев 15 Едва слышно шелест листвы 20 Едва слышно шепот человека (на расстоянии 1 метр). 25 Тихо шепот человека (1м) 30 Тихо шепот, тиканье настенных часов.Допустимый максимум по нормам для жилых помещений ночью, с 23 до 7 ч.(СНиП 23-03-2003 «Защита от шума»). 35 Довольно слышно приглушенный разговор 40 Довольно слышно обычная речь.Норма для жилых помещений днём, с 7 до 23 ч.Подробнее читать в «Российской газете» 45 Довольно слышно обычный разговор 50 Отчётливо слышно разговор, пишущая машинка 55 Отчётливо слышно Верхняя норма для офисных помещений класса А (по европейским нормам) 60 Шумно Норма для контор 65 Шумно громкий разговор (1м) 70 Шумно громкие разговоры (1м) 75 Шумно крик, смех (1м) 80 Очень шумно крик, мотоцикл с глушителем, шум пылесоса (с большой мощностью двигателя — 2 киловатта).
    Частотные диапазоны звука Поддиапазоны спектра звуковых частот, на которые настроены фильтры двух- или трёхполосных акустических систем: низкочастотный — колебания до 400 герц;среднечастотный — 400-5000 Гц;высокочастотный — 5000-20000Гц Скорость звука и дальность его распространения Приблизительная скорость слышимого, среднечастотного звука (частотой порядка 1-2 кГц) и максимальная дальность его распространения в различных средах:в воздухе — 344.4 метров в секунду (при температуре 21.1 по шкале Цельсия) и примерно 332 м/с — при нуле градусов;в воде — приблизительно 1.5 километра в секунду;в дереве твёрдых сортов — порядка 4-5 км/с вдоль волокон и в полторараза меньше — поперёк. При 20 °С., скорость звука в пресной воде равна 1484м/с (при 17° — 1430), в морской — 1490 м/с.

    Глава из книги английского инженера Руперта Тейлора «Шум», R. Taylor «Noise»

    В наше время все уже что-то слышали о «децибелах», но почти никто не знает, что это такое. Децибел представляется чем-то вроде акустического эквивалента «свечи» – единицы силы света – и кажется связанным со звоном колокольчиков (bell – в переводе с английского означает колокол, колокольчик). Однако это совсем не так: свое название децибел получил в честь Александера Грейама Белла – изобретателя телефона.

    Децибел не только не единица измерения звука, он вообще не является единицей измерения, во всяком случае в том смысле, как, например, вольты, метры, граммы и т. д. Если угодно, в децибелах можно измерить даже длину волос, чего никак нельзя сделать в вольтах. По-видимому, все это звучит несколько странно, так что попытаемся дать разъяснение. Вероятно, никто не удивится, если я скажу, что расстояние от Лондона до Инвернесса в двадцать раз больше, чем от моего дома до Лондона. Я могу выразить любое расстояние, сравнивая его с расстоянием от моего дома до Лондона, скажем до площади Пикадилли Расстояние от Лондона до Джон-о"Тротса в двадцать шесть раз больше, чем это последнее расстояние, а до Австралии – в 500 раз. Но это не означает, что Австралия удалена от чего бы то ни было на 500 единиц. Все приведенные числа выражают только отношения величин.

    Одна из измеримых характеристик звука – это количество заключенной в нем энергии; интенсивность звука в любой точке можно измерить как поток энергии, приходящейся на единичную площадку, и выразить, например, в ваттах на квадратный метр (Вт/м 2). При попытке записать в этих единицах интенсивность обычных шумов сразу же возникают трудности, так как интенсивность наиболее тихого звука, доступного восприятию человека с самым острым слухом, равна приблизительно 0,000 000 000 001 Вт/м 2 . Один из наиболее громких звуков, с которым мы сталкиваемся уже не без риска вредных последствий, – это шум реактивного самолета, пролетающего на расстоянии порядка 50 м. Его интенсивность составляет около 10 Вт/м 2 . А на расстоянии 100 м от места запуска ракеты «Сатурн» интенсивность звука заметно превышает 1000 Вт/м 2 . Очевидно, что оперировать числами, выражающими интенсивности звука, лежащие в столь широком диапазоне, очень трудно, независимо от того, представляем ли мы их в единицах энергии или даже в виде отношений. Существует простой, хотя и не вполне очевидный выход из данного затруднения. Интенсивность самого слабого слышимого звука равна 0,000 000 000 001 Вт/м 2 . Математики предпочтут записать это число таким образом: 10 -12 Вт/м2. Если кому-либо такая запись непривычна, напомним, что 10 2 это 10 в квадрате, или 100, а 10 3 это 10 в кубе, или 1000. Аналогично 10 -2 означает 1/10 2 , или 1/100, или 0,01, а 10 -3 это 1/10 3 , или 0,001. Умножить любое число на 10 x – значит х раз умножить его на 10.

    Пытаясь найти наиболее удобный способ выражения интенсивностей звука, попробуем представить их в виде отношений, приняв за эталонную интенсивность величину 10 -12 Вт/м2. При этом будем отмечать, сколько раз нужно умножить эталонную интенсивность на 10 для того, чтобы получить заданную интенсивность звука. Например, шум реактивного самолета в 10 000 000 000 000 (или в 10 13) раз превышает наш эталон, то есть этот эталон необходимо 13 раз умножить на 10. Такой способ выражения позволяет значительно уменьшить значения чисел, выражающих гигантский диапазон звуковых интенсивностей; если мы обозначим однократное увеличение в 10 раз как 1 бел, то получим «единицу» для выражения отношений. Так, уровень шума реактивного самолета соответствует 13 белам. Бел оказывается слишком большой величиной; удобнее пользоваться более мелкими единицами, десятыми долями бела, которые и называют децибелами. Таким образом, интенсивность шума реактивного двигателя равна 130 децибелам (130 дБ), но во избежание путаницы с каким-либо другим эталоном интенсивности звука следует указать, что 130 дБ определяется относительно эталонного уровня 10 -12 Вт/м 2 .

    Если отношение интенсивности данного звука к эталонной интенсивности выражается каким-нибудь менее круглым числом, например 8300, перевод в децибелы окажется не таким простым. Очевидно, число умножений на 10 будет больше 3 и меньше 4, но для точного определения этого числа необходимы длительные вычисления. Как обойти такое затруднение? Оказывается, весьма просто, поскольку все отношения, выраженные в единицах «десятикратных увеличений», давно вычислены – это логарифмы.

    Любое число можно представить как 10 в какой-то степени: 100 это 10 2 и, следовательно, 2 – это логарифм 100 при основании 10; 3 – логарифм 1000 при основании 10 и, что менее очевидно, 3,9191 – логарифм 8300. Нет необходимости все время повторять «при основании 10», потому что 10 – самое распространенное основание логарифма, и если нет другого указания, то подразумевается именно это основание. В формулах эта величина записывается как log10 или lg.

    Пользуясь определением децибела, можем теперь записать уровень интенсивности звука в виде:

    Например, при интенсивности звука в 0,26 (2,6×10 -1) Вт/м 2 уровень интенсивности в дБ относительно эталона 10 -12 Вт/м 2 равен

    Но логарифм 2,6 равен 0,415; следовательно, окончательный ответ выглядит так:

    10 × 11,415 = 114 дБ (с точностью до 1 дБ)

    Не следует забывать, что децибелы не являются единицами измерения в том смысле слова, как, например, вольты или омы, и что соответственно с ними приходится обращаться иначе. Если две аккумуляторные батареи по 6 В (вольт) соединить последовательно, то разность потенциалов на концах цепи составит 12 В. А что получится, если к шуму в 80 дБ добавить еще шум в 80 дБ? Шум общей интенсивностью в 160 дБ? Никак нет – ведь при удвоении числа его логарифм возрастает на 0,3 (с точностью до двух десятичных знаков). Тогда при удвоении интенсивности звука уровень интенсивности увеличивается на 0,3 бела, то есть на 3 дБ. Это справедливо для любого уровня интенсивности: удвоение интенсивности звука приводит к увеличению уровня интенсивности на 3 дБ. В табл. 1 показано, как увеличивается уровень интенсивности, выраженный в децибелах, при сложении звуков различной интенсивности.

    Таблица № 1

    Теперь, разрешив тайну децибела, приведем несколько примеров.

    Уровень шума в децибелах

    В табл. 2 дан перечень типичных шумов и уровни их интенсивности в децибелах.

    Таблица № 2

    Интенсивность типичных шумов
    Примерный уровень звукового давления, дБА Источник звука и расстояние до него
    160 Выстрел из ружья калибра 0,303 вблизи уха
    150 Взлет лунной ракеты, 100 м
    140 Взлет реактивного самолета, 25 м
    120 Машинное отделение подводной лодки
    100 Очень шумный завод
    90 Тяжелый дизельный грузовик,7 м;
    Дорожный перфоратор (незаглушенный),7 м
    80 Звон будильника, 1 м
    75 В железнодорожном вагоне
    70 В салоне небольшого автомобиля, движущегося со скоростью 50 км/ч;
    Квартирный пылесос, 3 м
    65 Машинописное бюро;
    Обычный разговор, 1 м
    40 Учреждение, где нет специальныхисточников шума
    35 Комната в тихой квартире
    25 Сельская местность, расположенная вдали от дорог

    Каким образом можно определить интенсивность данного звука? Это довольно сложная задача; значительно легче измерить колебания давления в звуковых волнах. В табл. 3 приведены значения звукового давления для звуков различной интенсивности. Из этой таблицы видно, что диапазон звуковых давлений не так широк, как диапазон интенсивностей: давление возрастает вдвое медленнее, чем интенсивность. При удвоении звукового давления энергия звуковой волны должна увеличиться в четыре раза – тогда соответственно увеличится скорость частиц среды. Поэтому, если мы измерим звуковое давление, как и интенсивность, в логарифмическом масштабе и, кроме того, введем множитель 2, получим те же величины для уровня интенсивности. Например, звуковое давление самого слабого из слышимых звуков равно примерно 0,00002 Н (ньютона)/м 2 , а в кабине дизельного грузовика оно составляет 2 Н/м 2 , следовательно, уровень интенсивности шумов в кабине равен

    Таблица № 3

    Выражая уровень звукового давления в децибелах, следует помнить, что при увеличении давления вдвое прибавляется 6 дБ. Если в кабине дизельного грузовика шум достигнет 106 дБ, то звуковое давление удвоится и составит 4 Н/м 2 , а интенсивность увеличится в четыре раза и достигнет 0,04 Вт/м 2 .

    Мы много говорили о мере интенсивности звука, но совершенно не касались практических методов измерения этой величины. К доступным для измерения характеристикам звуковой волны относятся интенсивность, давление, скорость и смещение частиц. Все эти характеристики непосредственно связаны друг с другом, и, если удается измерить хотя бы одну из них, остальные можно вычислить.

    Нетрудно увидеть или почувствовать на ощупь колебание легких предметов, оказавшихся на пути звуковой волны. На этом явлении основан принцип действия осциллографа – самого старого вида шумомера. Осциллограф состоит из диафрагмы, к центру которой прикреплена тонкая нить, механической системы для усиления колебаний, и пера, записывающего на бумажной ленте смещения диафрагмы. Такие записи напоминают «волнистые линии», о которых мы говорили в предыдущей главе.

    Этот прибор был крайне малочувствителен и годился только для подтверждения акустических теорий ученых того времени. Инерция механических деталей предельно ограничивала частотную характеристику и точность прибора. Замена механического усилителя оптической системой и использование фотографического метода регистрации сигналов позволили значительно снизить инерционность прибора. В усовершенствованном таким образом устройстве нить диафрагмы наматывалась на вращающийся барабан, закрепленный на оси, к которой прикреплялось зеркальце, вращающееся вместе с барабаном. На зеркальце падал луч света; при поворотах зеркальца то в одну, то в другую сторону, происходивших в результате колебаний мембраны, луч отклонялся, и эти отклонения можно было записывать на светочувствительную бумагу. И только с развитием электроники были разработаны более или менее точные измерительные приборы, а для конструирования современного портативного шумомера пришлось дожидаться изобретения транзисторов.

    По существу, современный шумомер – это электронный аналог старого механического устройства. Первым шагом в процессе измерения служит преобразование звукового давления в изменения электрического напряжения; это преобразование производит микрофон. В настоящее время в таких приборах применяют микрофоны самых различных типов: конденсаторные, с движущейся катушкой, кристаллические, ленточные, с нагретой проволокой, с сегнетовой солью – это лишь малая часть всех типов микрофонов. В нашей книге мы не будем рассматривать принципы их действия.

    Все микрофоны выполняют одну и ту же основную функцию, и большинство из них снабжено мембраной, того или иного вида, которая приводится в колебания изменениями давления в звуковой волне. Смещения мембраны вызывают соответствующие изменения напряжения на зажимах микрофона. Следующий шаг в измерении – усиление, а затем выпрямление переменного тока и заключительная операция – подача сигнала на вольтметр, откалиброванный в децибелах. В большинстве таких приборов вольтметром измеряются не максимальные, а «среднеквадратичные значения» сигнала, то есть результат определенного вида усреднения, которым пользуются чаще, чем максимальными значениями.

    Обычным вольтметром нельзя охватить огромный диапазон звуковых давлений и поэтому в той части устройства, где происходит усиление сигнала, имеется несколько цепей, различающихся по усилению на 10 дБ, которые можно включать последовательно одну за другой. Однако до сих пор еще широко применяют усовершенствованную модель старого осциллографа. В электронно-лучевом осциллоскопе проблема инерционности, свойственная механическому осциллографу, полностью исключена, так как масса электронного луча пренебрежимо мала, и он легко отклоняется электромагнитным полем и рисует на экране кривую колебаний напряжения, подаваемого на прибор.

    Полученная осциллографическая запись применяется для математического анализа формы звуковой волны. Осциллоскопы также чрезвычайно полезны и при измерении импульсных шумов. Как мы уже говорили, обычный шумомер непрерывно определяет среднеквадратичные значения сигнала. Но, например, звуковой хлопок или орудийный выстрел не порождают непрерывный шум, а создают единичный, очень мощный, иногда опасный для слуха импульс давления, который сопровождается постепенно затухающими колебаниями давления (рис. 13). Начальный скачок давления может повредить слух или разбить оконное стекло, но так как он единичен и кратковременен, то среднеквадратичная величина не будет для него характерна и может только привести к недоразумению. Хотя для измерения импульсных звуков существуют специальные шумомеры, большая часть их не сможет зарегистрировать полностью среднеквадратичную величину импульса просто потому, что они не успевают сработать. Вот здесь осциллоскоп и демонстрирует свои преимущества, мгновенно вычерчивая точную кривую подъема давления, так что максимальное давление в импульсе можно измерить прямо на экране.

    Рис. 13. Типичный импульсный шум

    Возможно, одним из наиболее существенных вопросов акустики является зависимость поведения звука от его частоты. Нижняя частотная граница восприятия звука человеком составляет около 30 Гц, а верхняя – не выше 18 кГц; поэтому шумомер должен был бы регистрировать звуки в том же диапазоне частот. Но тут возникает серьезное затруднение. Как мы увидим в следующей главе, чувствительность человеческого уха для различных частот далеко не одинакова; так, например, чтобы звуки с частотой 30 Гц и 1 кГц звучали одинаково громко, уровень звукового давления первого из них должен быть на 40 дБ выше, чем второго. И следовательно, показания шумомера сами по себе еще не многого стоят.

    Этой проблемой занялись специалисты по электронике, и современные шумомеры снабжены корректирующими контурами, состоящими из отдельных цепочек, подключая которые можно снизить чувствительность шумомера к низкочастотным и очень высокочастотным звукам и тем самым приблизить частотные характеристики прибора к свойствам человеческого уха. Обычно шумомер содержит три корректирующих контура, обозначаемых А, В и С; наиболее полезна коррекция А; коррекцию В применяют лишь изредка; коррекция С мало влияет на чувствительность в диапазоне 31,5 Гц - 8 кГц. В некоторых типах шумомеров используется еще коррекция D, которая позволяет считывать показания прибора прямо в единицах PN дБ, применяемых для измерения шума самолетов. Точный расчет PN дБ весьма сложен, но для высоких уровней шума уровень в единицах PN дБ равен уровню в дБ, измеренному шумомером с коррекцией D, плюс 7 дБ; в большинстве случаев шум реактивных самолетов, выраженный в PN дБ, приблизительно равен уровню в дБ, измеренному шумомером с коррекцией А, плюс 13 дБ.

    В настоящее время почти повсеместно уровень шума принимают равным уровню, измеренному в дБ при помощи шумомера с коррекцией А, и выражают его в единицах дБА. Хотя человеческое ухо воспринимает звук несравненно более утонченно, чем шумомер, и поэтому звуковые уровни, выраженные в дБА, ни в коей мере не соответствуют точно физиологической реакции, но простота этой единицы делает ее чрезвычайно удобной для практического применения.

    Важнейший недостаток измерения громкости в дБА состоит в том, что при этом наша реакция на звуки низкой частоты недооценивается и совершенно не учитывается повышенная чувствительность уха к громкости чистых тонов.

    К числу достоинств шкалы дБА следует, в частности, отнести то обстоятельство, что здесь, как мы увидим в следующей главе, удвоение громкости грубо соответствует увеличению уровня шума на 10 дБА. Однако даже эта шкала дает не более чем грубое указание на роль частотного состава шума, а так как эта характеристика шума часто чрезвычайно важна, то результаты измерений, проведенных с помощью шумомера, приходится дополнять данными, полученными при использовании других приборов.

    Частоты, как и интенсивности, измеряют в логарифмическом масштабе, причем за основу принимают ступени удвоения числа колебаний в секунду. Так как, однако, диапазон частот менее широк, чем диапазон интенсивностей, число десятикратных увеличений не подсчитывают, десятичными логарифмами не пользуются и частоты звука всегда выражают числом колебаний, или циклов в секунду. За единицу частоты принимают одно колебание в секунду, или 1 герц (Гц). Определение интенсивности звука для каждой частоты потребовало бы бесконечного числа измерений. Поэтому, как и в музыкальной практике, весь диапазон разделяют на- октавы. Самая большая частота в каждой октаве в два раза превышает самую малую. Первый, наиболее простой этап частотного анализа звука - измерение уровня звукового давления в пределах каждой из 8 или 11 октав, в зависимости от интересующего нас диапазона частот; при измерении сигнал с выхода шумомера поступает на набор октавных фильтров, или на октавный полосовой анализатор. Слово «полоса» указывает на тот или иной участок частотного спектра. Анализатор содержит 8 или 11 электронных фильтров. Эти устройства пропускают только те частотные компоненты сигнала, которые лежат в пределах их полосы. Включая фильтры по одному, можно последовательно измерить уровень звукового давления в каждой полосе непосредственно при помощи шумомера. Но во многих случаях даже октавные анализаторы не дают достаточных сведений о сигнале, и тогда прибегают к более детальному анализу, применяя фильтры в половину или в одну треть октавы. Для получения еще более детального анализа используют узкополосные анализаторы, которые «разрезают» шум на полосы постоянной относительной ширины, например 6 % от средней частоты полосы или на полосы шириной в определенное число герц, например 10 или 6 Гц. Если в шумовом спектре присутствуют чистые тоны, что случается нередко, их частоту и амплитуду можно установить точно с помощью анализатора дискретных частот.

    Обычно звукоанализирующая аппаратура очень громоздка, и поэтому ее применение ограничивается рамками лабораторий. Весьма часто звук, подлежащий исследованию, через микрофон и усилительные цепи шумомера записывают на высококачественный портативный магнитофон, применяя для калибровки контрольные сигналы; затем запись проигрывают уже в лаборатории, подавая сигнал на анализатор, который автоматически вычерчивает частотный спектр на бумажной ленте. На рис. 14 изображены спектры типичного шума, полученные с помощью октавного, третьоктавного и узкополосного (полоса 6 Гц) анализаторов.


    Рис. 14. Анализ звука с помощью октавного и третьоктавного фильтров и фильтра с шириной полосы 6 Гц.

    Однако, чтобы измерить шум, еще недостаточно знать уровень громкости и частоту звука. Если говорить о шуме окружающей среды, то он складывается из множества отдельных шумов различного происхождения: это шумы уличного движения, самолетов, промышленные шумы, а также шумы, возникающие в результате других видов деятельности человека. Если попытаться измерить уровень шума на улице обычным шумомером, то окажется, что это чрезвычайно сложная задача: стрелка шумомера будет непрерывно колебаться в очень широких пределах. Что же следует принять за уровень шума? Максимальный отсчет? Нет, эта цифра слишком высока и непоказательна. Средний уровень? Это было бы возможно, но крайне трудно оценить среднюю величину для какого-то определенного промежутка времени, а чтобы удерживать стрелку в пределах шкалы, придется непрерывно менять ступени усиления шумомера.

    Таблица № 4

    Существуют два общепринятых метода учета флуктуации уровня шума, позволяющие выражать этот уровень в численной мере. В первом методе используют так называемый анализатор статистического распределения. Это устройство регистрирует относительную долю времени, в течение которого измеряемый уровень шума находится в пределах каждой из ступеней шкалы, расположенных, например, через каждые 5 дБ. Результаты таких измерений показывают, в течение какой доли полного времени был превышен каждый из звуковых уровней. Нанеся на график числа, представленные в табл. 4, соединив точки плавной линией и установив уровни, которые были превышены в течение 1, 10, 50, 90 и 99 % времени, мы сможем дать удовлетворительное описание «шумового климата». Указанные уровни обозначаются так: L1, L10, L50, L90 и L99. L1 дает представление о максимальном значении уровня шума, L10 – это характерный высокий уровень, тогда как L90 как бы показывает шумовой фон, то есть уровень, до которого снижается шум при наступлении временного затишья. Большой интерес представляет разность между значениями L10 и L90; она указывает, в каких пределах в каждом данном месте варьируется уровень шума, а чем больше колебания шума, тем сильнее его раздражающее воздействие. Впрочем, уровень L10 и сам по себе служит хорошим показателем беспокоящего действия транспортного шума; этот показатель широко применяется при измерении и прогнозирования транспортного шума, и с его учетом определяют размеры государственной компенсации жертвам шума новых автострад и дорог (см. гл. 11). Итак, L10 – это уровень звука, выраженный в дБА, который превышается в течение точно десяти процентов от полного времени измерений.

    Обычно транспортный шум флуктуирует вполне определенным образом, поэтому уровень L10 служит самостоятельным достаточно удовлетворительным показателем шума, хотя только частично представляет статистическую картину шума. Если же шумы меняются беспорядочно, как, например, это происходит при наложении друг на друга железнодорожных, промышленных и иногда самолетных шумов, распределение шумовых уровней сильно колеблется от точки к точке. В подобных случаях также желательно выразить все статистические данные одним числом. Были сделаны попытки изобрести формулу, включающую всю картину шума, включая и размах шумовых флуктуации. К таким показателям относятся «индекс транспортного шума» и «уровень шумового загрязнения», но самый распространенный показатель – это особого рода средняя величина, обозначаемая Lэкв. Она характеризует среднее значение энергии звука (в отличие от арифметического усреднения уровней, выраженных в дБ); иногда Lэкв называют эквивалентным уровнем непрерывного шума, потому что численно эта величина соответствует уровню такого строго стабильного шума, при котором за весь период измерения микрофон принял бы то же суммарное количество энергии, какое поступает в него при всех неравномерностях, всплесках и выбросах измеряемого флуктуирующего шума. В простейшем случае Lэкв составит, например 90 дБА, если уровень шума все время равнялся 90 дБА, или если половину времени измерения шум составлял 93 дБА, а остальное время полностью отсутствовал. Действительно, так как удвоение интенсивности или энергии шума приводит к увеличению его уровня на 3 дБ, то для того, чтобы при удвоении интенсивности шума сохранить постоянным общее количество энергии, следует вдвое уменьшить время его действия. Аналогично ту же величину Lэкв = 90 дБА мы получим при уровне шума 100 дБА, если он действует в течение одной десятой того же промежутка времени. Измерение расхода электроэнергии при помощи электросчетчика производится подобным же образом. На практике периоды постоянного уровня шума и периоды полного его отсутствия встречаются не часто, и поэтому рассчитать Lэкв достаточно сложно. Здесь на помощь приходят таблицы распределения типа табл. 4, или специально сконструированные автоматические счетчики. Индекс Lэкв обладает двумя недостатками: при усреднении короткие всплески шума с высоким уровнем вносят больший вклад, чем периоды шума низкого уровня; кроме того, увеличение числа максимумов мало влияет на величину Lэкв. Например, если при усреднении за день шума от 100 поездов получается эквивалентный уровень Lэкв = 65 дБА, то при увеличении числа поездов вдвое Lэкв возрастает всего на 3 дБА. Для того чтобы величина Lэкв возросла так же, как при удвоении громкости (то есть как при увеличении уровня на 10 дБА) шума, создаваемого каждым из поездов, их число пришлось бы увеличить в 10 раз. И все же, несмотря на некоторую неполноценность, шкала Lэкв представляет собой наилучшую универсальную меру шума из всех имеющихся в настоящее время. В Англии она постепенно получит такое же распространение, какое имеет на континенте. Сейчас она уже применяется в Англии для измерения дозы шума, получаемой лицами, работающими в промышленности по найму.

    Применяется и другая мера, по существу гораздо более сходная с Lэкв, чем может показаться на первый взгляд: это нормировочный индекс шума, к сожалению слишком хорошо знакомый тем, кто живет вблизи крупных аэропортов. Шкалу нормировочных индексов шума используют для характеристики среднемаксимальных уровней шума самолетов, выраженных в PN дБ (так называемый «воспринимаемый уровень звука», см. Акуст. словарь), а так как она начинается от уровня 80 PN дБ (около 67 дБА), то значение 80 вычитается из величины среднемаксимального уровня. Теоретически, если за время измерения шум производит только один самолет, величина этого индекса будет точно равняться среднемаксимальному уровню в PN дБ минус 80. При каждом удвоении числа самолетов следует прибавлять к этому числу 4,5 единицы, а не 3, как для шкалы Lэкв. Хотя формула этого индекса и выглядит несколько ошеломляюще, выше нам удалось фактически полностью его охарактеризовать. Если отдельные пиковые уровни шума самолетов различаются всего на несколько дБ, усредненную величину можно вычислить арифметически. В противном случае значения уровня шума, выраженные в дБ, придется обратно переводить в величины интенсивности, и здесь потребуются таблица логарифмов и светлая голова!

    Существует множество других мер, шкал и индексов для измерения шума, включая фоны, соны, нои, различные производные PN дБ и ряд других критериев, не считая всех международных вариантов шкалы нормировочных индексов шума. Заниматься описанием других единиц и показателей нет необходимости. Следует отметить, что в США для измерения шума на рабочем месте принят показатель Lэкв, но при удвоении времени воздействия шума к его значению там прибавляют не 3 дБ, как в Европе, а 5 дБ. В остальном показатели дБА, L10 и Lэкв применяются одинаково во всем мире.

    ЧТО ТАКОЕ ДЕЦИБЕЛЫ?

    Универсальные логарифмические единицы децибелы широко используются при количественных оценках параметров различных аудио и видео устройств в нашей стране и за рубежом. В радиоэлектронике, в частности, в проводной связи, технике записи и воспроизведения информации децибелы являются универсальной мерой.

    Децибел - не физическая величина, а математическое понятие

    В электроакустике децибел служит по существу единственной единицей для характеристики различных уровней - интенсивности звука, звукового давления, громкости, а также для оценки эффективности средств борьбы с шумами.

    Децибел - специфическая единица измерений, не схожая ни с одной из тех, с которыми приходится встречаться в повседневной практике. Децибел не является официальной единицей в системе единиц СИ, хотя, по решению Генеральной конференции по мерам и весам, допускается его применение без ограничений совместно с СИ, а Международная палата мер и весов рекомендовала включить его в эту систему.

    Децибел - не физическая величина, а математическое понятие.

    В этом отношении у децибел есть некоторое сходство с процентами. Как и проценты, децибелы безразмерны и служат для сравнения двух одноименных величин, в принципе самых различных, независимо от их природы. Следует отметить, что термин «децибел» всегда связывают только с энергетическими величинами, чаще всего с мощностью и, с некоторыми оговорками, с напряжением и током.

    Децибел (русское обозначение - дБ, международное - dB) составляет десятую часть более крупной единицы - бела 1 .

    Бел - это десятичный логарифм отношения двух мощностей. Если известны две мощности Р 1 и Р 2 , то их отношение, выраженное в белах, определяется формулой:

    Физическая природа сравниваемых мощностей может быть любой - электрической, электромагнитной, акустической, механической, - важно лишь, чтобы обе величины были выражены в одинаковых единицах - ваттах, милливаттах и т. п.

    Напомним вкратце, что такое логарифм. Любое положительное 2 число, как целое, так и дробное, можно представить другим числом в определенной степени.

    Так, например, если 10 2 = 100, то 10 называют основанием логарифма, а число 2 - логарифмом числа 100 и обозначают log 10 100=2 или lg 100 = 2 (читается так: «логарифм ста при основании десять равен двум»).

    Логарифмы с основанием 10 называются десятичными логарифмами и применяются чаще всего. Для чисел, кратных 10, этот логарифм численно равен количеству нулей за единицей, а для остальных чисел вычисляется на калькуляторе или находится по таблицам логарифмов.

    Логарифмы с основанием е = 2,718... называются натуральными. В вычислительной технике обычно применяются логарифмы с основанием 2.

    Основные свойства логарифмов:

    Разумеется, эти свойства справедливы и для десятичных и натуральных логарифмов. Логарифмический способ представления чисел часто оказывается очень удобным, так как позволяет подменять умножение - сложением, деление - вычитанием, возведение в степень умножением, а извлечение корня - делением.

    На практике бел оказался слишком крупной величиной, например, любые отношения мощностей в границах от 100 до 1000 укладываются в пределах одного бела - от 2 Б до 3 Б. Поэтому для большей наглядности решили число, показывающее количество бел, умножать на 10 и полученное произведение считать показателем в децибелах, т. е., например, 2 Б = 20 дБ, 4,62 Б = 46,2 дБ и т. д.

    Обычно отношение мощностей выражают сразу в децибелах по формуле:

    Действия с децибелами не отличаются от операций с логарифмами.

    2 дБ = 1 дБ + 1 дБ → 1,259 * 1,259 = 1,585;
    3 дБ → 1,259 3 = 1,995;
    4 дБ → 2,512;
    5 дБ → 3,161;
    6 дБ → 3,981;
    7 дБ → 5,012;
    8 дБ → 6,310;
    9 дБ → 7,943;
    10 дБ → 10,00.

    Знак → означает «соответствует».

    Подобным образом можно составить таблицу и для отрицательных значений децибел. Минус 1 дБ характеризует убывание мощности в 1/0,794 = 1,259 раза, т. е. тоже примерно на 26%.

    Запомните, что:

    ⇒ Если Р 2 1 т. е. P 2 /P 1 =1 , то N дБ = 0 , так как lg 1=0 .

    ⇒ Если P 2 > P l , то число децибел положительно.

    ⇒ Если Р 2 < P 1 , то децибелы выражаются отрицательными числами.

    Положительные децибелы часто называют децибелами усиления. Отрицательные децибелы, как правило, характеризуют потери энергии (в фильтрах, делителях, длинных линиях) и называются децибелами затухания или потерь.

    Между децибелами усиления и затухания существует простая зависимость: одинаковому числу децибел с разными знаками соответствуют обратные числа отношений. Если, например, отношению Р 2 1 = 2 → 3 дБ , то –3 дБ → 1/2 , т. е. 1 / Р 2 1 = Р 1 2

    ⇒ Если Р 2 1 представляет степень десяти, т. е. Р 2 1 = 10 k , где k - любое целое число (положительное или отрицательное), то NдБ = 10k , так как lg 10 k = k .

    ⇒ Если Р 2 или Р 1 равно нулю, то выражение для NдБ теряет смысл.

    И еще одна особенность: кривая, определяющая значения децибел в зависимости от отношений мощностей, вначале быстро растет, затем ее рост замедляется.

    Зная число децибел, соответствующих одному отношению мощностей, можно произвести пересчет для другого - близкого или кратного отношения. В частности, для отношений мощностей, различающихся в 10 раз, число децибел отличается на 10 дБ. Эту особенность децибел следует хорошо понять и твердо запомнить - она является одной из основ всей системы

    К достоинствам системы децибел относят:

    ⇒ универсальность, т. е. возможность использования при оценке различных параметров и явлений;

    ⇒ огромные перепады преобразуемых чисел - от единиц и до миллионов - отображаются в децибелах числами первой сотни;

    ⇒ натуральные числа, представляющие степени десяти, выражаются в децибелах числами, кратными десяти;

    ⇒ взаимообратные числа выражаются в децибелах равными числами, но с разными знаками;

    ⇒ в децибелах могут быть выражены как отвлеченные, так и именованные числа.

    К недостаткам системы децибел относят:

    ⇒ малую наглядность: для преобразования децибел в отношения двух чисел или выполнения обратных действий требуется проведение расчетов;

    ⇒ отношения мощностей и отношения напряжений (или токов) пересчитываются в децибелы по разным формулам, что иногда ведет к ошибкам и путанице;

    ⇒ децибелы могут отсчитываться только относительно не равного нулю уровня; абсолютный нуль, например 0 Вт, 0 В, децибелами не выражается.

    Зная число децибел, соответствующих одному отношению мощностей, можно произвести пересчет для другого - близкого или кратного отношения. В частности, для отношений мощностей, различающихся в 10 раз, число децибел отличается на 10 дБ. Эту особенность децибел следует хорошо понять и твердо запомнить - она является одной из основ всей системы.

    Сравнение двух сигналов путем сопоставления их мощностей не всегда бывает удобным, так как для непосредственного измерения электрической мощности в диапазоне звуковых и радиочастот требуются дорогие и сложные приборы. На практике при работе с аппаратурой гораздо проще измерять не мощность, которая выделяется на нагрузке, а падение напряжения на ней, а в некоторых случаях - протекающий ток.

    Зная напряжение или ток и сопротивление нагрузки, легко определить мощность. Если измерения проводятся на одном и том же резисторе, то:

    Этими формулами очень часто пользуются практике, но обратите внимание, что если напряжения или токи измеряются на разных нагрузках, эти формулы не работают и следует использовать другие, более сложные зависимости.

    Пользуясь приемом, который был использован при составлении таблицы децибел мощности, можно аналогично определить, чему равен 1 дБ отношения напряжений и токов. Положительный децибел будет равен 1,122, а отрицательный децибел будет равен 0,8913, т.е. 1 дБ напряжения или тока характеризует возрастание или убывание этого параметра примерно на 12% по отношению к первоначальному значению.

    Формулы выводились в предположении, что сопротивления нагрузок имеют активный характер и между напряжениями или токами нет фазового сдвига. Строго говоря, следовало бы рассматривать общий случай и учитывать для напряжений (токов) наличие угла сдвига по фазе, а для нагрузок не только активное, но полное сопротивление, включая и реактивные составляющие, однако это существенно только на высоких частотах.

    Полезно запомнить некоторые часто встречающиеся на практике значения децибел и характеризующие их отношения мощностей и напряжений (токов), приведенные в табл. 1.

    Таблица 1. Часто встречающиеся значения децибел мощности и напряжения

    Пользуясь этой таблицей и свойствами логарифмов легко подсчитать, чему соответствуют произвольные значения логарифм. Например, 36 дБ мощности можно представить как 30+3+3, что соответствует 1000*2*2 = 4000. Тот же самый результат мы получим, представив 36 как 10+10+10+3+3 → 10*10*10*2*2 = 4000.

    СОПОСТАВЛЕНИЕ ДЕЦИБЕЛ С ПРОЦЕНТАМИ

    Ранее отмечалось, что понятие децибел имеет некоторое сходство с процентами. Действительно, так как в процентах выражается отношение какого-то числа к другому, условно принятому за сто процентов, отношение этих чисел также можно представить в децибелах при условии, что оба числа характеризуют мощность, напряжение или ток. Для отношения мощностей:

    Для отношения напряжений или токов:

    Можно также вывести формулы для пересчета децибел в проценты отношения:

    В табл. 2 дан перевод некоторых, наиболее часто встречающихся значений децибел в проценты отношений. Различные промежуточные значения можно найти по номограмме на рис. 1.


    Рис. 1. Перевод децибел в проценты отношений по номограмме

    Таблица 2. Перевод децибел в проценты отношений

    Рассмотрим два практических примера, поясняющих перевод процентного отношения в децибелы.

    Пример 1. Какому уровню гармоник в децибелах по отношению к уровню сигнала основной частоты соответствует коэффициент нелинейных искажений в 3%?

    Воспользуемся рис. 1. Через точку пересечения вертикальной линии 3% с графиком «напряжение» проведем горизонтальную линию до пересечения с вертикальной осью и получим ответ: –31 дБ.

    Пример 2. Какому ослаблению напряжения в процентах соответствует его изменение на –6 дБ?

    Ответ. На 50% первоначальной величины.

    В практических расчетах дробную часть численного значения децибел часто округляют до целого числа, однако при этом в результаты расчетов вносится дополнительная погрешность.

    ДЕЦИБЕЛЫ В РАДИОЭЛЕКТРОНИКЕ

    Рассмотрим несколько примеров, поясняющих методику использования децибел в радиоэлектронике.

    Затухание в кабеле

    Потери энергии в линиях и кабелях на единицу длины характеризуются коэффициентом затухания α, который при равном входном и выходном сопротивлениях линии определяется в децибелах:

    где U 1 - напряжение в произвольном сечении линии; U 2 - напряжение в другом сечении, отстоящем от первого на единицу длины: 1 м, 1 км и т. д. Например, высокочастотный кабель типа РК-75-4-14 имеет на частоте 100 МГц коэффициент затухания α, = –0,13 дБ/м, кабель витой пары категории 5 на той же частоте имеет затухание порядка –0,2 дБ/м, а у кабеля категории 6 несколько меньше. График затухания сигнала в неэкранированном кабеле витой пары показан на рис. 2.


    Рис. 2. График затухания сигнала в неэкранированном кабеле витой пары

    Оптоволоконные кабели имеют существенно более низкие величины затухания в диапазоне от 0,2 до 3 дБ при длине кабеля в 1000 м. Все оптические волокна имеют сложную зависимость затухания от длины волны, которая имеет три «окна прозрачности» 850 нм, 1300 нм и 1550 нм. «Окно прозрачности» означает наименьшие потери при максимальной дальности передачи сигнала. График затухания сигнала в оптоволоконных кабелях показан на рис. 3.


    Рис. 3. График затухания сигнала в оптоволоконных кабелях

    Пример 3. Найти, каким будет напряжение на выходе отрезка кабеля РК-75-4-14 длиной l = 50 м, если ко входу его приложено напряжение 8 В частоты 100 МГц. Сопротивление нагрузки и волновое сопротивление кабеля равны, или, как говорят, согласованы между собой.

    Очевидно, что затухание, вносимое отрезком кабеля, составляет K = –0,13 дБ/м * 50 м = –6,5 дБ. Это значение децибел примерно соответствует отношению напряжений 0,47. Значит, напряжение на выходном конце кабеля U 2 = 8 В * 0,47 = 3,76 В.

    Этот пример иллюстрирует очень важное положение: потери в линии или кабеле с ростом их длины возрастают чрезвычайно быстро. Для отрезка кабеля длиной в 1 км затухание составит уже –130 дБ, т. е. сигнал будет ослаблен более чем в триста тысяч раз!

    Затухание в значительной мере зависит от частоты сигналов - в диапазоне звуковых частот оно будет гораздо меньше, чем в видео диапазоне, но логарифмический закон затухания будет тот же, и при большой длине линии ослабление будет существенным.

    Усилители звуковой частоты

    В усилители звуковой частоты с целью повышения их качественных показателей обычно вводится отрицательная обратная связь. Если коэффициент усиления устройства по напряжению без обратной связи равен К , а с обратной связью К ОС то число, показывающее, во сколько раз изменяется коэффициент усиления под действием обратной связи, называют глубиной обратной связи . Ее обычно выражают в децибелах. В работающем усилителе коэффициенты К и К ОС определяются экспериментально, если только усилитель не возбуждается при разомкнутой петле обратной связи. При проектировании усилителя сначала вычисляют К , а затем определяют значение К ОС следующим образом:

    где β - коэффициент передачи цепи обратной связи, т. е. отношение напряжения на выходе цепи обратной связи к напряжению на ее входе.

    Глубина обратной связи в децибелах может быть рассчитана по формуле:

    Стереофонические устройства по сравнению с монофоническими должны удовлетворять дополнительным требованиям. Эффект объемного звучания обеспечивается только при хорошем разделении каналов, т. е. при отсутствии проникновения сигналов из одного канала в другой. В практических условиях это требование полностью удовлетворить не удается, и взаимное просачивание сигналов имеет место, главным образом, через узлы, общие для обоих каналов. Качество разделения по каналам характеризуется так называемым переходным затуханием а ПЗ Мерой переходного затухания в децибелах служит отношение выходных мощностей обоих каналов, когда входной сигнал подается только на один канал:

    где Р Д - максимальная выходная мощность действующего канала; Р СВ - выходная мощность свободного канала.

    Хорошему разделению каналов соответствует переходное затухание 60-70 дБ, отличному –90-100 дБ.

    Шум и фон

    На выходе любого приемно-усилительного устройства даже при отсутствии полезного входного сигнала можно обнаружить переменное напряжение, которое вызвано собственными шумами устройства. Причины, вызывающие собственные шумы, могут быть как внешними - за счет наводок, плохой фильтрации напряжения питания, так и внутренними, обусловленными собственными шумами радиокомпонентов. Сильнее всего сказываются шумы и, помехи, возникающие во входных цепях и в первом усилительном каскаде, так как они усиливаются всеми последующими каскадами. Собственные шумы ухудшают реальную чувствительность приемника или усилителя.

    Количественная оценка шумов осуществляется несколькими способами.

    Простейший состоит в том, что все шумы, независимо от причины и места их возникновения, пересчитываются ко входу, т. е. напряжение шумов на выходе (при отсутствии входного сигнала) делится на коэффициент усиления:

    Это напряжение, выраженное в микровольтах, и служит мерой собственных шумов. Однако для оценки устройства с точки зрения помех важно не абсолютное значение шумов, а отношение между полезным сигналом и этим шумом (отношение сигнал/шум), так как полезный сигнал должен надежно выделяться на фоне помех. Отношение сигнал/шум обычно выражают в децибелах:

    где Р с - заданная или номинальная выходная мощность полезного сигнала вместе с шумом; Р ш - выходная мощность шумов при выключенном источнике полезного сигнала; U c - напряжение сигнала и шумов на нагрузочном резисторе; U Ш - напряжение шумов на том же резисторе. Так получается т.н. «невзвешенное» («unweighted») отношение сигнал/шум.

    Часто в параметрах аудиоаппаратуры приводится отношение сигнал/шум, измеренное со взвешивающим фильтром («weighted»). Фильтр позволяет учесть разную чувствительность слуха человека к шуму на разных частотах. Чаще всего используется фильтр типа А, в этом случае в обозначении обычно указывается единица измерения «дБА» («dBA»). Использование фильтра дает обычно лучшие количественные результаты, чем для невзвешенного шума (обычно отношение сигнал/шум получается на 6-9 дБ больше), поэтому (из маркетинговых соображений) производители аппаратуры чаще указывают именно «взвешенное» значение. Подробнее о взвешивающих фильтрах см. ниже в разделе «Шумомеры».

    Очевидно, что для успешной эксплуатации устройства отношение сигнал/шум должно быть выше какого-то минимально допустимого значения, которое зависит от назначения и требований, предъявляемых к устройству. Для аппаратуры класса Hi-Fi этот параметр должен быть не менее 75 дБ, для аппаратуры Hi-End - не менее 90 дБ.

    Иногда на практике пользуются обратным отношением, характеризуя им уровень шумов относительно полезного сигнала. Уровень шумов выражается тем же числом децибел, что и отношение сигнал/шум, но с отрицательным знаком.

    В описаниях приемно-усилительной аппаратуры иногда фигурирует термин уровень фона, который характеризует в децибелах отношение составляющих напряжения фона к напряжению, соответствующему заданной номинальной мощности. Составляющие фона кратны частоте питающей сети (50, 100, 150 и 200 Гц) и при измерении выделяются из общего напряжения помех при помощи полосовых фильтров.

    Отношение сигнал/шум не позволяет, однако, судить о том, какая часть шумов обусловлена непосредственно элементами схемы, а какая внесена в результате несовершенства конструкции (наводки, фон). Для оценки шумовых свойств радиокомпонентов вводится понятие коэффициента (фактора) шума . Коэффициент шума оценивается по мощности и также выражается в децибелах. Характеризовать этот параметр можно следующим образом. Если на входе устройства (приемника, усилителя) одновременно действуют полезный сигнал мощностью Р с и шумы мощностью Р ш , то отношение сигнал/шум на входе будет с ш )вх После усиления отношение с ш )вых окажется меньше, так как к входным шумам добавятся и усиленные собственные шумы усилительных каскадов.

    Коэффициентом шума называют выраженное в децибелах отношение:

    где К р - коэффициент усиления по мощности.

    Следовательно, коэффициент шума представляет отношение мощности шумов на выходе к усиленной мощности шумов, действующих на входе.

    Значение Рш.вх определяется расчетным путем; Рш.вых измеряется, а К р обычно. известно из расчета или после измерения. Идеальный с точки зрения шумов усилитель должен усиливать только полезные сигналы и не должен вносить дополнительные шумы. Как следует из уравнения, для подобного усилителя коэффициент шума F Ш = 0 дБ .

    Для транзисторов и ИС, предназначенных для работы в первых каскадах усилительных устройств, коэффициент шума регламентируется и приводится в справочниках.

    Напряжение собственных шумов определяет и другой важный параметр многих усилительных устройств - динамический диапазон.

    Динамический диапазон и регулировки

    Динамическим диапазоном называется выраженное в децибелах отношение максимальной неискаженной выходной мощности к ее минимальному значению, при котором, еще обеспечивается допустимое отношение сигнал/шум:

    Чем меньше уровень собственных шумов и чем выше неискаженная выходная мощность, тем шире динамический диапазон.

    Аналогичным образом определяется и динамический диапазон источников звука - оркестра, голоса, только здесь минимальная мощность звука определяется шумовым фоном. Чтобы устройство могло передать без искажений как минимальную, так и максимальную амплитуды входного сигнала, его динамический диапазон должен быть не меньше динамического диапазона сигнала. В случаях, когда динамический диапазон входного сигнала превышает динамический диапазон устройства, его искусственно сжимают. Так поступают, например, при звукозаписи.

    Эффективность действия ручного регулятора громкости проверяется при двух крайних положениях регулятора. Сначала при регуляторе в положении максимальной громкости на вход усилителя звуковой частоты подается напряжение частотой 1 кГц такой величины, чтобы на выходе усилителя установилось напряжение, соответствующее некоторой заданной мощности. Затем ручку регулятора громкости переводят на минимальную громкость, а напряжение на входе усилителя поднимают до тех пор, пока напряжение на выходе снова не станет равным первоначальному. Отношение входного напряжения при регуляторе в положении минимальной громкости к входному напряжению при максимальной громкости, выраженное в децибелах, является показателем работы регулятора громкости.

    Приведенными примерами далеко не исчерпываются практические случаи приложения децибел к оценке параметров радиоэлектронных устройств. Зная общие правила, применения этих единиц, можно понять, как они используются в других, не рассмотренных здесь условиях. Встретившись с незнакомым термином, определенным в децибелах, следует отчетливо представить, отношению каких двух величин он соответствует. В одних случаях это понятно из самого определения, в других случаях связь между составляющими сложнее, и, когда нет четкой ясности, следует обратиться к описанию методики измерения во избежание серьезных ошибок.

    Оперируя с децибелами, следует всегда обращать внимание на то, отношению каких единиц - мощности или напряжения - соответствует каждый конкретный случай, т. е. какой коэффициент - 10 или 20 - должен стоять перед знаком логарифма.

    ЛОГАРИФМИЧЕСКИЙ МАСШТАБ

    Логарифмическая система, в том числе и децибелы, часто применяется при построении амплитудно-частотных характеристик (АЧХ) - кривых, изображающих зависимость коэффициента передачи различных устройств (усилителей, делителей, фильтров) от частоты внешнего воздействия. Для построения частотной характеристики расчетным или опытным путем определяется ряд точек, характеризующих выходное напряжение или мощность при неизменном входном напряжении на разных частотах. Плавная кривая, соединяющая эти точки, характеризует частотные свойства устройства или системы.

    Если по оси частот численные значения откладывать в линейном масштабе, т. е. пропорционально их фактическим значениям, то такая частотная характеристика окажется неудобной для пользования и не будет наглядной: в области низших частот она сжата, а высших - растянута.

    Частотные характеристики строятся обычно в так называемом логарифмическом масштабе. По оси частот в удобном для работы масштабе откладываются величины, пропорциональные не самой частоте f , а логарифму lgf/f o , где f о - частота, соответствующая началу отсчета. Против отметок на оси надписываются значения f . Для построения логарифмических АЧХ используют специальную логарифмическую миллиметровую бумагу.

    При проведении теоретических расчетов обычно пользуются не просто частотой f , а величиной ω = 2πf которую называют круговой частотой.

    Частота f о , соответствующая началу отсчета, может быть сколь угодно малой, но не может быть равной нулю.

    По вертикальной оси откладываются в децибелах либо в относительных числах отношения коэффициентов передачи при различных частотах к его максимальному либо среднему значению.

    Логарифмический масштаб позволяет на небольшом отрезке оси отобразить широкий диапазон частот. На такой оси одинаковым отношениям двух частот соответствуют равные по длине участки. Интервал, характеризующий рост частоты в десять раз, называют декадой ; двукратному отношению частот соответствует октава (этот термин заимствован из теории музыки).

    Частотный диапазон с граничными частотами f H и f В занимает в декадах полосу f B /f H = 10m , где m - число декад, а в октавах 2 n , где n - число октав.

    Если полоса в одну октаву слишком широка, то можно применять интервалы с меньшим отношением частот в пол-октавы или трети октавы.

    Средняя частота октавы (полуоктава) не равна среднему арифметическому от нижней и верхней частот октавы, а равна 0,707 f В .

    Частоты, найденные подобным образом, называют среднеквадратичными.

    Для двух соседних октав средние частоты также образуют октавы. Пользуясь этим свойством, можно по желанию один и тот же логарифмический ряд частот считать либо границами октав, либо их средними частотами.

    На бланках с логарифмической сеткой средняя частота делит октавный ряд пополам.

    На оси частот в логарифмическом масштабе на каждую треть октавы приходятся равные отрезки оси, каждый длиной в одну треть октавы.

    При испытаниях электроакустической аппаратуры и проведении акустических измерений рекомендуется применять ряд предпочтительных частот. Частоты этого ряда являются членами геометрической прогрессии со знаменателем 1,122. Для удобства значения некоторых частот округлены в пределах ±1%.

    Интервал между рекомендованными частотами составляет одну шестую октавы. Сделано это не случайно: ряд содержит достаточно большой набор частот для разных видов измерений и вбирает ряды частот с интервалами в 1/3, 1/2 и целую октаву.

    И еще одно важное свойство ряда предпочтительных частот. В некоторых случаях в качестве основного интервала частот используется не октава, а декада. Так вот, предпочтительный ряд частот в равной мере можно рассматривать и как двоичный (октавный), и как десятичный (декадный).

    Знаменатель прогрессии, на основе которой построен предпочтительный ряд частот, численно равен 1дБ напряжения, или 1/2 дБ мощности.

    ПРЕДСТАВЛЕНИЕ ИМЕНОВАННЫХ ЧИСЕЛ В ДЕЦИБЕЛАХ

    До сих пор мы полагали, что и делимое и делитель под знаком логарифма имеют произвольную величину и для выполнения децибельного пересчета важно знать только их отношение независимо от абсолютных значений.

    В децибелах можно выражать также конкретные значения мощностей, а также напряжений и токов. Когда величина одного из членов, стоящих под знаком логарифма в рассмотренных ранее формулах задана, второй член отношения и числа децибел будут однозначно определять друг друга. Следовательно, если задаться какой-либо эталонной мощностью (напряжением, током) в качестве условного уровня сравнения, то другой мощности (напряжению, току), сопоставляемой с ней, будет соответствовать строго определенное число децибел. Нулю децибел в этом случае отвечает мощность, равная мощности условного уровня сравнения, так как при N P = 0 Р 2 1 поэтому этот уровень обычно называют нулевым. Очевидно, что при разных нулевых уровнях одна и та же конкретная мощность (напряжение, ток) будут выражаться разными числами децибел.

    где Р - мощность, подлежащая преобразованию в децибелы, а Р 0 - нулевой уровень мощности. Величина Р 0 ставится в знаменателе, при этом положительными децибелами выражаются мощности Р > Р 0 .

    Условный уровень мощности, с которым производится сравнение, в принципе может быть любым, однако не каждый был бы удобен для практического использования. Чаще всего за нулевой уровень выбирается мощность в 1 мВт, рассеиваемая на резисторе сопротивлением 600 Ом. Выбор этих параметров произошел исторически: первоначально децибел как единица измерения появился в технике телефонной связи. Волновое сопротивление воздушных двухпроводных линий из меди близко к 600 Ом, а мощность в 1 мВт развивает без усиления высококачественный угольный телефонный микрофон на согласованном сопротивлении нагрузки.

    Для случая, когда Р 0 = 1 мВт=10 –3 Вт: P р = 10 lg P + 30

    Тот факт, что децибелы представляемого параметра отчитываются относительно определенного уровня, подчеркивают термином «уровень»: уровень помех, уровень мощности, уровень громкости

    Пользуясь этой формулой, легко найти, что относительно нулевого уровня 1 мВт мощность 1 Вт определяется как 30 дБ, 1 кВт как 60 дБ, а 1 МВт - это 90 дБ, т. е. практически все мощности, с которыми приходится встречаться, укладываются в пределах первой сотни децибел. Мощности, меньшие 1 мВт, будут выражаться отрицательными числами децибел.

    Децибелы, определенные относительно уровня 1 мВт, называют децибел-милливаттом и обозначают дБм или dBm. Наиболее распространенные значения нулевых уровней сведены в таблицу 3.

    Аналогичным образом можно представить формулы для выражения в децибелах напряжений и токов:

    где U и I - напряжение или ток, подлежащие преобразованию, a U 0 и I 0 - нулевые уровни этих параметров.

    Тот факт, что децибелы представляемого параметра отчитываются относительно определенного уровня, подчеркивают термином «уровень»: уровень помех, уровень мощности, уровень громкости.

    Чувствительность микрофонов , т. е. отношение выходного электрического сигнала к звуковому давлению, действующему на диафрагму, часто выражают в децибелах, сравнивая мощность, развиваемую микрофоном на номинальном нагрузочном сопротивлении, со стандартным нулевым уровнем мощности P 0 =1 мВт . Этот параметр микрофона носит название стандартного уровня чувствительности микрофона . Типовыми условиями испытания принято считать звуковое давление 1 Па частотой 1 кГц, нагрузочное сопротивление для динамического микрофона - 250 Ом.

    Таблица 3. Нулевые уровни для измерения именованных чисел

    Обозначение Описание
    междунар. русское
    dBс дБн опорным является уровень несущей частоты (англ. carrier) или основной гармоники в спектре; например, «уровень искажений составляет –60 дБн».
    dBu дБu опорное напряжение 0,775 В, соответствующее мощности 1 мВт на нагрузке 600 Ом; например, стандартизованный уровень сигнала для профессионального аудио оборудования составляет +4 дБu, то есть 1,23 В.
    dBV дБВ опорное напряжение 1 В на номинальной нагрузке (для бытовой техники обычно 47 кОм); например, стандартизованный уровень сигнала для бытового аудио оборудования составляет –10 дБВ, то есть 0,316 В
    dBμV дБмкВ опорное напряжение 1мкВ; например, «чувствительность приёмника составляет –10дБмкВ».
    dBm дБм опорная мощность 1мВт, соответствующая мощности 1 милливатт на номинальной нагрузке (в телефонии 600 Ом, для профессиональной техники обычно 10 кОм для частот менее 10МГц, 50 Ом для высокочастотных сигналов, 75 Ом для телевизионных сигналов); например, «чувствительность сотового телефона составляет –110 дБм»
    dBm0 дБм0 опорная мощность в дБм в точке нулевого относительного уровня. dBm - опорное напряжение соответствует тепловому шуму идеального резистора сопротивлением 50 Ом при комнатной температуре в полосе 1 Гц. Например, «уровень шума усилителя составляет 6 дБм0»
    dBFS
    (англ. Full Scale - «полная шкала») опорное напряжение соответствует полной шкале прибора; например, «уровень записи составляет –6 dBfs»
    dBSPL
    (англ. Sound Pressure Level - «уровень звукового давления») - опорное звуковое давление 20 мкПа, соответствующее порогу слышимости; например, «громкость 100 dBSPL».
    dBPa - опорное звуковое давление 1 Па или 94 дБ звуковой шкалы громкости dBSPL; например, «для громкости 6 dBPa микшером установили +4 dBu, а регулятором записи –3 dBFS, искажения при этом составили –70 dBc».
    dBA, dBB,
    dBC, dBD

    опорные уровни выбраны в соответствии с частотными характеристиками стандартных «весовых фильтров» типа A, B, C или D cоответственно (фильтры отражают кривые равной громкости для разных условий, см. ниже в разделе «Шумомеры»)

    Мощность, развиваемая динамическим микрофоном, естественно, чрезвычайно мала, гораздо меньше 1 мВт, и уровень чувствительности микрофона поэтому выражается отрицательными децибелами. Зная стандартный уровень чувствительности микрофона (он приводится в паспортных данных), можно вычислить его чувствительность в единицах напряжения.

    В последние годы для характеристики электрических параметров радиоаппаратуры стали применять в качестве нулевых уровней и другие величины, в частности 1 пВт, 1 мкВ, 1 мкВ/м (последний - для оценки напряженности поля).

    Иногда возникает необходимость пересчитать известный уровень мощности P Р или напряжения P U , заданные относительно одного нулевого уровня Р 01 (или U 01 ) на другой Р 02 (или U 02 ). Сделать это можно по следующей формуле:

    Возможность представления в децибелах как отвлеченных, так и именованных чисел приводит к тому, что одно и то же устройство может характеризоваться разными числами децибел. Эту двойственность децибел надо иметь в виду. Защитой от ошибок тут может служить ясное понимание природы определяемого параметра.

    Во избежание путаницы желательно указывать опорный уровень явно, например –20 дБ (относительно 0.775 B).

    При пересчёте уровней мощностей в уровни напряжений и обратно надо обязательно учитывать сопротивление, являющиеся стандартным для данной задачи. В частности, дБВ для 75-омной ТВ-цепи соответствует (дБм–11дБ); дБмкВ для 75-омной ТВ-цепи соответствует (дБм+109дБ).

    ДЕЦИБЕЛЫ В АКУСТИКЕ

    До сих пор, говоря о децибелах, мы оперировали электрическими терминами - мощностью, напряжением, током, сопротивлением. Между тем логарифмические единицы широко применяют и в акустике, где они являются наиболее часто применяемой единицей при количественных оценках звуковых величин.

    Звуковое давление р представляет избыточное давление в среде по отношению к постоянному давлению, существующему там до появления звуковых волн (единица измерения - паскаль (Па)).

    Примером приемников звукового давления (или градиента звукового давления) может служить большинство типов современных микрофонов, которые преобразуют это давление в пропорциональные электрические сигналы.

    Интенсивность звука связана со звуковым давлением и колебательной скоростью частиц воздуха простой зависимостью:

    J=pv

    Если звуковая волна распространяется в свободном пространстве, где нет отражения звука, то

    v=p/(ρc)

    здесь ρ - плотность среды, кг/м3; с - скорость звука в среде, м/с. Произведение ρc характеризует среду, в которой происходит распространение звуковой энергии, и называется ее удельным акустическим сопротивлением . Для воздуха при нормальном атмосферном давлении и температуре 20° С ρc =420 кг/м2*с; для воды ρc = 1,5*106 кг/м2*с.

    Можно записать, что:

    J=р 2 / (ρс)

    все, что говорилось о преобразовании в децибелы электрических величин, в равной мере относится и к акустическим явлениям

    Если сопоставить эти формулы с формулами, выведенными ранее для мощности. тока, напряжения и сопротивления, то легко обнаружить аналогию между отдельными понятиями, характеризующими электрические и акустические явления, и уравнениями, описывающими количественные зависимости между ними.

    Таблица 4. Связь между электрическими и акустическими характеристиками

    Аналогом электрической мощности являются акустическая мощность и интенсивность звука; аналогом напряжения служит звуковое давление; электрический ток соответствует колебательной скорости, а электрическое сопротивление - удельному акустическому сопротивлению. По аналогии с законом Ома для электрической цепи можно говорить об акустическом законе Ома. Следовательно, все, что говорилось о преобразовании в децибелы электрических величин, в равной мере относится и к акустическим явлениям.

    Применение децибел в акустике очень удобно. Интенсивности звуков, с которыми приходится иметь дело в современных условиях, могут различаться в сотни миллионов раз. Такой огромный диапазон изменений акустических величин создает большие неудобства при сопоставлении их абсолютных значений, а при использовании логарифмических единиц эта проблема снимается. Кроме того, установлено, что громкость звука при оценке ее на слух возрастает примерно пропорционально логарифму интенсивности звука. Таким образом, уровни этих величин, выраженные в децибелах, довольно близко соответствуют громкости, воспринимаемой ухом. Для большинства людей с нормальным слухом изменение громкости звука частотой 1 кГц ощущается при изменении интенсивности звука примерно на 26%, т. е. на 1 дБ.

    В акустике по аналогии с электротехникой определение децибел базируется на отношении двух мощностей:

    где J 2 и J 1 - акустические мощности двух произвольных источников звука.

    Подобным же образом в децибелах выражается отношение двух интенсивностей звука:

    Последнее уравнение справедливо только при условии равенства акустических сопротивлений, другими словами, постоянства физических параметров среды, в которой распространяются звуковые волны.

    Децибелы, определенные по приведенным выше формулам, не связаны с абсолютными значениями акустических величин и применяются для оценки затухания звука, например эффективности звуковой изоляции и систем подавления и заглушения шумов. Подобным образом выражаются и неравномерности частотных характеристик, т. е. разность максимального и минимального значений в заданном диапазоне частот различных излучателей и приемников звука: микрофонов, громкоговорителей и пр. Отсчет при этом обычно ведется от среднего значения рассматриваемой величины, либо (при работе в звуковом диапазоне) относительно значения при частоте 1 кГц.

    В практике акустических измерений, однако, как правило, приходится иметь дело со звуками, значения которых должны быть выражены конкретными числами. Аппаратура для проведения акустических измерений сложнее аппаратуры для электрических измерений, а по точности существенно уступает ей. С целью упрощения техники измерений и снижения погрешности в акустике отдается предпочтение измерениям относительно эталонных, калиброванных уровней, величины которых известны. С этой же целью для измерения и исследования акустических сигналов их преобразуют в электрические.

    Абсолютные значения мощностей, интенсивностей звуков и звуковых давлений также могут быть выражены в децибелах, если в приведенных выше формулах задаваться значениями одного из членов под знаком логарифма. Международным соглашением уровнем отсчета интенсивности звука (нулевым уровнем) принято считать J 0 = 10 –12 Вт/м 2 . Эту ничтожную интенсивность, под действием которой амплитуда колебаний барабанной перепонки меньше размеров атома, условно принято считать порогом слышимости уха в области частот наибольшей чувствительности слуха. Ясно, что все слышимые звуки выражаются относительно этого уровня только положительными децибелами. Фактический порог слышимости для людей с нормальным слухом немного выше и равен 5-10 дБ.

    Для представления интенсивности звука в децибелах относительно заданного уровня используют формулу:

    Значение интенсивности, вычисленное по этой формуле, принято называть уровнем интенсивности звука .

    Подобным образом можно выразить и уровень звукового давления:

    Чтобы уровни интенсивности звука и звукового давления в децибелах численно выражались одной величиной, в качестве нулевого уровня звукового давления (порога звукового давления) должно быть принято значение:

    Пример. Определим, какой уровень интенсивности в децибелах создает оркестр со звуковой мощностью 10 Вт на расстоянии r = 15 м.

    Интенсивность звука на расстоянии r = 15 м от источника составит:

    Уровень интенсивности в децибелах:

    Тот же результат будет получен, если преобразовать в децибелы не уровень интенсивности, а уровень звукового давления.

    Так как в месте приема звука уровень интенсивности звука и уровень звукового давления выражаются одинаковым числом децибел, на практике часто применяется термин «уровень в децибелах» без указания, к какому именно параметру эти децибелы относятся.

    Определив уровень интенсивности в децибелах в какой-либо точке пространства на расстоянии r 1 от источника звука (расчетным или опытным путем), нетрудно вычислить уровень интенсивности на расстоянии r 2 :

    Если на приемник звука одновременно воздействуют два или несколько источников звука и известна интенсивность звука в децибелах, создаваемая каждым из них, то для определения результирующей величины децибелы следует обратить в абсолютные значения интенсивности (Вт/м2), сложить их, и эту сумму снова преобразовать в децибелы. Складывать сразу децибелы в этом случае нельзя, так как это соответствовало бы произведению абсолютных значений интенсивностей.

    Если имеется n несколько одинаковых источников звука с уровнем каждого L J , то их суммарный уровень будет:

    Если уровень интенсивности одного источника звука превышает уровни остальных на 8-10 дБ и более, можно учитывать только один этот источник, а действием остальных пренебречь.

    Помимо рассмотренных акустических, уровней иногда можно встретить и понятие уровня звуковой мощности источника звука, определяемого по формуле:

    где Р - звуковая мощность характеризуемого произвольного источника звука, Вт; Р 0 - начальная (пороговая) звуковая мощность, величина которой берется обычно равной P 0 =10 –12 Вт.

    УРОВНИ ГРОМКОСТИ

    Чувствительность уха к звукам разных частот различна. Зависимость эта довольно сложна. При небольших уровнях интенсивности звука (примерно до 70 дБ) максимальная чувствительность составляет 2-5 кГц и убывает с повышением и понижением частоты. Поэтому звуки одинаковой интенсивности, но разных частот будут казаться на слух разными по громкости. С ростом силы звука частотная характеристика уха выравнивается и при больших уровнях интенсивности (80 дБ и выше) ухо реагирует приблизительно одинаково на звуки разных частот звукового диапазона. Из этого следует, что интенсивность звука, которая измеряется специальными широкополосными приборами, и громкость, которая фиксируется ухом, - понятия не равнозначные.

    Уровень громкости звука любой частоты характеризуется величиной уровня равного по громкости звука частотой 1 кГц

    Уровень громкости звука любой частоты характеризуется величиной уровня равного по громкости звука частотой 1 кГц. Уровни громкости характеризуются так называемыми кривыми равных громкостей, каждая из которых показывает, какой уровень интенсивности на разных частотах должен развить источник звука, чтобы создать впечатление равной громкости с тоном 1 кГц заданной интенсивности (рис. 4).


    Рис. 4. Кривые равной громкости

    Кривые равной громкости представляют по существу семейство частотных характеристик уха в децибельном масштабе для разных уровней интенсивности. Отличие их от обычных АЧХ состоит лишь в способе построения: «завал» характеристики, т. е. снижение коэффициента передачи, здесь изображен повышением, а не понижением соответствующего участка кривой.

    Единице, характеризующей уровень громкости, во избежание путаницы с децибелами интенсивности и звукового давления присвоено особое наименование - фон .

    Уровень громкости звука в фонах численно равен уровню звукового давления в децибелах чистого тона с частотой 1 кГц, равного с ним по громкости.

    Другими словами, один фон - это 1 дБ звукового давления тона частотой 1 кГц с поправкой на частотную характеристику уха. Между двумя, этими единицами нет постоянного соотношения: оно меняется в зависимости от уровня громкости сигнала и его частоты. Только для токов частотой 1 кГц численные значения для уровня громкости в фонах и уровня интенсивности в децибелах совпадают.

    Если обратиться к рис. 4 и проследить ход одной из кривых, например, для уровня 60 фон, то нетрудно определить, что для обеспечения равной громкости с тоном 1 кГц на частоте 63 Гц требуется интенсивность звука 75 дБ, а на частоте 125 Гц только 65 дБ.

    В высококачественных усилителях звуковой частоты применяются ручные регуляторы громкости с тонкомпенсацией, или, как их еще называют, компенсированные регуляторы. Такие регуляторы одновременно с регулировкой величины входного сигнала в сторону уменьшения обеспечивают подъем частотной характеристики в области низших частот, благодаря чему для слуха создается неизменный тембр звучания при различных громкостях воспроизведения звука.

    Исследованиями установлено также, что изменение громкости звука вдвое (по оценке на слух) примерно эквивалентно изменению уровня громкости на 10 фон. Эта зависимость положена в основу оценки громкости звука. За единицу громкости, называемую сон , условно принят уровень громкости 40 фон. Удвоенной громкости, равной двум сон, соответствует 50 фон, четырем сон - 60 фон и т. д. Пересчет уровней громкости в единицы громкости облегчается графиком на рис. 5.


    Рис. 5. Связь между громкостью и уровнем громкости

    Большинство звуков, с которыми приходится иметь дело в повседневной жизни, имеют шумовой характер. Характеристика громкости шумов на основе сопоставления с чистыми тонами 1 кГц проста, но приводит к тому, что оценка шума на слух может расходиться с показаниями измерительных приборов. Объясняется это тем, что при равных уровнях громкости шума (в фонах) наиболее раздражающее действие на человека оказывают составляющие шума в диапазоне 3-5 кГц. Шумы могут восприниматься как равно неприятные, хотя их уровни громкости не равны.

    Раздражающее действие шума более точно оценивается другим параметром, так называемым уровнем воспринимаемого шума . Мерой воспринимаемого шума служит уровень звука равномерного шума в октавной полосе со средней частотой 1 кГц, который в заданных условиях оценивается слушателем как одинаково неприятный с измеряемым шумом. Уровни воспринимаемого шума характеризуются единицами PNdB или РNдБ. Расчет их ведется по специальной методике.

    Дальнейшим развитием системы оценки шумов являются так называемые эффективные уровни воспринимаемого шума, выражаемые в ЕРNдБ. Система ЕРNдБ позволяет комплексно оценивать характер воздействующего шума: частотный состав, дискретные составляющие в его спектре, а также продолжительность шумового воздействия.

    По аналогии с единицей громкости сон введена единица шумности - ной .

    За один ной принята шумность равномерного шума в полосе 910-1090 Гц при уровне звукового давления 40 дБ. В остальном нои сходны с сонами: рост шумности вдвое соответствует росту уровня воспринимаемого шума на 10 РNдБ, т. е. 2 ной = 50 РNдБ, 4 ной = 60 РNдБ и т. д.

    Работая с акустическими понятиями, следует иметь в виду, что интенсивность звука представляет объективное физическое явление, которое может быть точно определено и измерено. Оно реально существует независимо от того, слышит его кто-нибудь или нет. Громкость звука определяет эффект, который звук производит на слушателя, и является, поэтому, чисто субъективным понятием, так как зависит от состояния органов слуха человека и его личных свойств к восприятию звука.

    ШУМОМЕРЫ

    Для измерения всевозможных шумовых характеристик применяют специальные приборы - шумомеры. Шумомер представляет автономный переносный прибор, позволяющий измерять непосредственно в децибелах уровни интенсивности звука в широких пределах относительно стандартных уровней.

    Шумомер (рис. 6) состоит из высококачественного микрофона, широкополосного усилителя, переключателя чувствительности, меняющего усиление ступенями по 10 дБ, переключателя частотных характеристик и графического индикатора, который обычно обеспечивает несколько вариантов представления измеряемых данных - от цифр и таблицы до графика.


    Рис. 6. Портативный цифровой шумомер

    Современные шумомеры весьма компактны, что позволяет производить измерения и в труднодоступных местах. Из отечественных шумомеров можно назвать прибор компании «Октава-Электродизайн» «Октава-110А» (http://www.octava.info/?q=catalog/soundvibro/slm) .

    Шумомеры позволяют определять как общие уровни интенсивностей звука при измерениях с линейной частотной характеристикой, так и уровни громкости звука в фонах при измерениях с частотными характеристиками, сходными с характеристиками человеческого уха. Диапазон измерений уровней звуковых давлений находится обычно в пределах от 20-30 до 130-140 дБ относительно стандартного уровня звукового давления 2*10–5 Па. С помощью сменных микрофонов уровень измерений может быть расширен до 180 дБ.

    В зависимости от метрологических параметров и технических характеристик отечественные шумомеры подразделяются на первый и второй классы.

    Частотные характеристики всего тракта шумомера, включая микрофон, стандартизированы. Всего имеется пять частотных характеристик. Одна из них линейна в пределах всего рабочего диапазона частот (условное обозначение Лин ), четыре другие приближенно повторяют характеристики уха человека для чистых тонов при разных уровнях громкости. Они названы первыми буквами латинского алфавита А, В, С и D . Вид этих характеристик показан на рис. 7. Переключатель частотных характеристик не зависит от переключателя пределов измерений. Для шумомеров первого класса обязательны характеристики А, В, С и Лин . Частотная характеристика D - дополнительная. Шумомеры второго класса должны иметь характеристики А и С ; применение остальных допускается.


    Рис. 7. Стандартные частотные характеристики шумомеров

    Характеристика А имитирует ухо примерно на уровне 40 фон. Эта характеристика используется при измерении слабых шумов - до 55 дБ и при замерах уровней громкости. В практических условиях чаще всего пользуются частотной характеристикой с коррекцией А . Объясняется это тем, что, хотя восприятие звука человеком гораздо сложнее простой частотной зависимости, определяющей характеристику А , во многих случаях результаты измерений прибором хорошо согласуются с оценкой шума на слух при небольших уровнях громкости. Многими стандартами - отечественными и зарубежными - оценку шумов рекомендуется проводить по характеристике А независимо от фактического уровня интенсивности звука.

    Характеристика В повторяет характеристику уха на уровне 70 фон. Она применяется при измерении шумов в пределах 55-85 дБ.

    Характеристика С равномерна в диапазоне 40-8000 Гц. Этой характеристикой пользуются при измерении значительных уровней громкости - от 85 фон и выше, при измерениях уровней звукового давления - независимо от пределов измерения, а также при подключениях к шумомеру устройств для измерения спектрального состава шума в тех случаях, когда шумомер не имеет частотной характеристики Лин .

    Характеристика D - вспомогательная. Она представляет усредненную характеристику уха примерно на уровне 80 фон с учетом повышения его чувствительности в полосе от 1,5 до 8 кГц. При пользовании этой характеристикой показания шумомера более точно, чем по другим характеристикам, соответствуют уровню воспринимаемого шума человеком. Эта характеристика применяется главным образом при оценке раздражающего действия шума большой интенсивности (самолетов, быстроходных машин и т. п.).

    В составе шумомера имеется также переключатель Быстро - Медленно - Импульс , управляющий временными характеристиками прибора. Когда переключатель установлен в положение Быстро , прибор успевает следить за быстрыми изменениями уровней звука, в положении Медленно прибор показывает среднее значение измеряемого шума. Временная характеристика Импульс применяется при регистрации коротких звуковых импульсов. Некоторые типы шумомеров содержат также интегратор с постоянной времени 35 мс, имитирующий инерционность звуковосприятия человека.

    При пользовании шумомером результаты измерений будут различаться в зависимости от установленной частотной характеристики. Поэтому при записи показаний для исключения путаницы указывается и вид характеристики, при которой производились измерения: дБ (А ), дБ (В ), дБ (С ) или дБ (D ).

    Для калибровки всего тракта микрофон - измеритель в комплект шумомера обычно входит акустический калибратор, назначение которого - создавать равномерный шум определенного уровня.

    Согласно действующей в настоящее время инструкции «Санитарные нормы допустимого шума в помещениях жилых и общественных зданий и на территории жилой застройки» нормируемыми параметрами постоянного или прерывистого шума являются уровни звуковых давлений (в децибелах) в октавных полосах частот со средними частотами 63, 125, 250, 500, 1000, 2000, 4000, 8000 Гц. Для непостоянного шума, например шума от проезжающего транспорта, нормируемым параметром является уровень звука в дБ(А ).

    Установлены следующие суммарные уровни звука, измеренные по шкале А шумомера: жилые помещения - 30 дБ, аудитории и классы учебных заведений - 40 дБ, территории жилой застройки и площадки отдыха - 45 дБ, рабочие помещения административных зданий - 50 дБ (А ).

    Для санитарной оценки уровня шума в показания шумомера вносятся поправки от –5 дБ до +10 дБ, которые учитывают характер шума, суммарное время его действия, время суток и месторасположение объекта. Например, в дневное время норма допустимого шума в жилых помещениях с учетом поправки составляет 40 дБ.

    В зависимости от спектрального состава шума ориентировочная норма предельно допустимых уровней, дБ, характеризуется следующими цифрами:

    Высокочастотный от 800 Гц и выше 75-85
    Среднечастотный 300-800 Гц 85-90
    Низкочастотный ниже 300 Гц 90-100

    При отсутствии шумомера ориентировочную оценку уровней громкости различных шумов можно проводить с помощью таблицы. 5.

    Таблица 5. Шумы и их оценка

    Оценка громкости
    на слух
    Уровень
    шума, дБ
    Источник и место измерения шума
    Оглушительный 160 Повреждение барабанной перепонки.
    140-170 Реактивные двигатели (вблизи).
    140 Предел терпимости к шуму.
    130 Болевой порог (звук воспринимается как боль); поршневые авиадвигатели(2-3 м).
    120 Гром над головой.
    110 Быстроходные мощные двигатели (2-3 м); клепальная машина (2-3 м); очень шумный цех.
    Очень громкий 100 Симфонический оркестр (пики громкости); деревообрабатывающие станки (на рабочем месте)
    90 Уличный громкоговоритель; шумная улица; металлорежущие станки (на рабочем месте).
    80 Радиоприемник громко (2 м)
    Громкий 70 Салон автобуса; крик; свисток милиционера (15 м); улица средней шумности; шумный офис; зал большого магазина
    Умеренный 60 Спокойный разговор (1 м).
    50 Легковая машина (10-15 м); спокойный офис; жилое помещение.
    Слабый 40 Шепот; читальный зал.
    60 Шелест бумаги.
    20 Больничная палата.
    Очень слабый
    10 Тихий сад; студия радиоцентра.
    0 Порог слышимости
    1 А. Белл - американский учёный, изобретатель и бизнесмен шотландского происхождения, основоположник телефонии, основатель компании Bell Telephone Company, определившей развитие телекоммуникационной отрасли в США.
    2 Логарифмы отрицательных чисел являются комплексными числами и далее рассматриваться не будут.

    Чрезмерный шум плохо влияет не только на органы слуха. По данным ВОЗ, порядка 2% всех смертей в мире вызваны заболеваниями, связанными с избыточным шумом.


    Современная медицина считает громкие звуки одним из грозных врагов здоровья человека. В экологии существует даже понятие «шумовое загрязнение». Кроме слуховых расстройств, могут возникнуть сердечно-сосудистые заболевания, гипертоническая болезнь. Нарушаются обмен веществ, деятельность щитовидной железы, мозга. Снижаются память, работоспособность. От шумового стресса появляется бессонница, пропадает аппетит. Высокий уровень шума может вызвать язвенную болезнь, гастрит, психические заболевания.

    Шум через проводящие пути звукового анализатора влияет на различные центры головного мозга, в результате чего нарушается работа разных систем организма. По данным австрийского ученого Гриффита, шум становится причиной преждевременного старения в 30 случаях из 100 и укорачивает жизнь людей в крупных городах на 8-12 лет. Эксперты ВОЗ считают безопасным для здоровья звук в 85 дБ, действующий на человека ежедневно не более 8 часов.

    25-30 децибел

    Т акой уровень шума считается комфортным для человека. Это естественный звуковой фон, без которого невозможна жизнь.

    Кстати…

    По громкости это сравнимо с шорохом листьев на деревьях - 5-10 дБ, шумом ветра - 10-20 дБ, шепотом - 30-40 дБ. А такжес приготовлением еды на плите - 35-42 дБ, наполнением ванны - 36-58 дБ, движением лифта - 34-42 дБ, шумом холодильника - 42 дБ, кондиционера - 45 дБ.

    В доме не должно быть слишком тихо. Когда вокруг гробовое молчание, мы подсознательно испытываем беспокойство. Шум дождя, шелест листвы, перезвон подвешенных в дверном проеме колокольчиков, тиканье часов действуют на нас умиротворяюще и даже оказывают целебное воздействие.

    Мы привыкли думать, что тишина - это отсутствие звуков, но, как выяснилось, наш мозг отчетливо слышит ее и воспринимает так же, как и другие звуки. Это выяснили ученые из университета штата Орегон в США.

    60-80 децибел

    Такой шум, действующий регулярно, вызывает у человека расстройства вегетативной нервной системы и утомляет даже при непродолжительном воздействии.

    Кстати…

    Большой магазин - 60 дБ, стиральная машина - 68 дБ, пылесос - 70 дБ, игра на пианино - 80 дБ, детский плач - 78 дБ, автомобиль - до 80 дБ.

    Уровень шума воспринимается субъективно, возможно привыкание. Но в отношении развивающихся вегетативных реакций адаптации не наблюдается.

    Постоянно действующий транспортный шум (65 дБ) приводит к потере слуха. Уличный шум нарушает работу центра слуха в головном мозге и негативно влияет на поведение. К такому выводу пришли ученые из университета штата Калифорния в Сан-Франциско.

    90-110 децибел

    Звук воспринимается как мучительный. Приводит к снижению слуха. При интенсивном воздействии шума в 95 дБ и выше возможно нарушение витаминного, углеводного, белкового, холестеринового и водно-солевого обмена. При силе звука 110 дБ возникает так называемое «шумовое опьянение», развивается агрессия.

    Кстати…

    Мотоцикл, мотор грузовика и Ниагарский водопад - 90 дБ, перепланировка в квартире - 90-100 дБ, газонокосилка - 100 дБ, концерт и дискотека - 110-120 дБ.

    Согласно ГОСТам, производство с таким уровнем шума является вредным, работники должны регулярно проходить медосмотр. Люди, работающие в таких условиях, в 2 раза чаще страдают гипертонией. Рабочим шумных профессий рекомендуется принимать витамины группы В и С.

    Если плеер включен на полную мощность, то на уши действует звук порядка 110 дБ. Высок риск развития тугоухости (глухоты).

    115-120 децибел

    Это «болевой порог», когда звука как такового практически уже не слышно, чувствуется боль в ушах.

    Кстати…

    Лидеры по созданию такого шума - аэропорты и вокзалы. Громкость товарного состава при движении составляет более 100 дБ. Когда поезд подходит к платформе, уровень шума на перроне составляет чуть меньше - 95 дБ. Даже в километре от взлетно-посадочной полосы уровень шума от взлетающего или садящегося лайнера составляет больше 100 дБ.

    Уровень шума в метро может достигать 110 дБ на станциях и 80-90 дБ - в вагонах.

    Не стоит чересчур увлекаться караоке. Уровень акустической нагрузки при этом превосходит допустимые пределы, достигая 115 дБ. После такого экстремального вокала слух временно снижается на 8 дБ.

    140-150 децибел

    Шум практически непереносим, возможна потеря сознания, могут лопнуть барабанные перепонки.

    Кстати…

    При запуске реактивных двигателей самолетов уровень шума колеблется от 120 до 140 дБ, шум работающей дрели - 140 дБ, старт ракеты - 145 дБ, залп салюта, рок-концерт рядом с огромным мощным динамиком, машина с «пробитым» глушителем -120-150 дБ.

    180 децибел и более

    Смертельно для человека. Начинает разрушаться даже металл.

    Кстати…

    Ударная волна от сверхзвукового самолета - 160 дБ, выстрел из 122-миллиметровой гаубицы - 183 дБ, взрыв мощного вулкана - 180 дБ.

    Согласно исследованиям американских специалистов, самый громкий звук в животном мире издает синий кит - 189 дБ.

    Проблемы большого города

    По оценкам экспертов, до 70% территории Москвы подвержены сверхнормативному шуму от различных источников. Величина превышений доходит до следующих значений:

    • 20-25 дБ - вблизи автотрасс;
    • до 30-35 дБ - для квартир домов, обращенных в сторону крупных автотрасс (без шумозащитного остекления);
    • до 10-20 дБ - вблизи железных дорог;
    • до 8-10 дБ - на территориях, подверженных периодическому воздействию авиашума;
    • до 30 дБ - при несоблюдении установленных требований по ведению строительных работ в ночные часы.

    Не слышу

    Ухо человека может слышать лишь колебания, частота которых составляет от 16 до 20 000 Гц. Колебания с частотой до 16 Гц называются инфразвуком, более 20 000 Гц - ультразвуком, и человеческое ухо их не воспринимает. Самая высокая чувствительность уха к звукам - в диапазоне частот 1000-4000 Гц. Чем выше тональность звука или шума, тем сильнее его неблагоприятное действие на орган слуха. Инфра- и ультразвук могут нанести вред здоровью человека. Однако степень их влияния зависит от частоты и времени воздействия.

    Дайте поспать!

    Чувствительность слуха во сне увеличивается на 10-14 дБ. Согласно нормативам ВОЗ, сердечно-сосудистые заболевания могут возникнуть, если человек по ночам постоянно подвергается воздействию шума громкостью 50 дБ и выше. Чтобы заработать бессонницу, достаточно шума в 42 дБ, чтобы просто стать раздражительным - 35 дБ.